Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:53:33.775Z Has data issue: false hasContentIssue false

Mechanical Properties of Thermoplastic Polyolefin (TPO) /Clay Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Yong-Hong Ruan
Affiliation:
[email protected], City University of Hong Kong, Dept. of Physics and Materials Science, Hong Kong, N/A, People's Republic of China
Sie-Chin Tjong
Affiliation:
[email protected], City University of Hong Kong, Dept. of Physics and Materials Science, Hong Kong, N/A, People's Republic of China
Get access

Abstract

Thermoplastic polyolefin (TPO) contained 30 wt.% PP and 70 wt.% SEBS-g-MA, and its nanocomposites reinforced with 0.3 -1.5 wt.% organoclay (OMMT; Cloisite 30B) by a two-step melt mixing followed by injection molding. The microstructure and mechanical behavior of the TPO/OMMT nanocomposites were investigated. X-ray diffraction measurements revealed the absence of basal diffracting peak of OMMT in TPO/OMMT, suggesting formation of intercalated/exfoliated nanocomposites. Tensile tests showed that the stiffness, yield strength and tensile strength of TPO can be enhanced by adding low loading levels of OMMT. Thus, OMMT can reinforce TPO due to their large aspect ratios. Moreover, there was no reduction in the impact strength of the TPO/OMMT nanocomposites associated with the clay additions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kojima, M., Usuki, A., Okada, A., Kagimato, O.. J. Mater. Res., 8,11851189 (1993)Google Scholar
[2] Messermith, P.B., Giannelis, E.P.. Chem. Mater., 6,17191725 (1994)Google Scholar
[3] Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, L.G., Giannelis, E.P.. Adv. Mater.,7,154156 (1995)Google Scholar
[4] Gilman, J. W.. Appl. Clay Sci., 15,3149 (1999)Google Scholar
[5] Reichert, P., Nitz, H., Klinke, S., Brandsch, R., Thomann, R., Mulhaupt, R.. Macromol. Mater.Eng., 275, 817 (2000)Google Scholar
[6] Dennis, H.R., Hunter, D.L., Chang, D., Kim, S., White, J. L., Cho, J. W.. Polymer, 42(23), 95139522 (2001)Google Scholar
[7] Tjong, S. C., Bao, S. P.. J. Polym. Sci. Part B: Polym Phys, 42, 28782891 (2004)Google Scholar
[8] Garcia-Martinez, J. M., Laguna, O., Areso, S., Collar, E.P.. J. Polym. Sci. Part B: Polym.Phys., 40(13), 13711382 (2002)Google Scholar
[9] Tjong, S. C., Meng, Y. Z.. J. Polym. Sci. Part B: Polym. Phys., 41(19), 23322341 (2003)Google Scholar
[10] Mehta, S., Mirabella, F. M., Rufener, K., Bafna, A.. J. Appl. Polym. Sci., 92(2), 928936 (2004)Google Scholar
[11] Lee, H. S., Fasulo, P. D.,. Rodgers, W. R., Paul, D. R., Polymer, 46, 1167311689 (2005)Google Scholar
[12] Mishra, J.K, Hwang, K.J., Chang, S H, Polymer, 46, 19952002 (2005)Google Scholar
[13] Lee, H. S,. Fasulo, P. D., Rodgers, W. R., Paul, D..R., Polymer, 47, 35283539 (2006)Google Scholar
[14] Ahn, Y. C., Paul, D. R., Polymer, 47, 28302838 (2006)Google Scholar
[15] Varghese, S.; Karger-Kocsis, J., J Appl Polym Sci, 91, 813819 (2004)Google Scholar
[16] Gatos, K. G., Karger-Kocsis, J., Polymer, 46, 30693076 (2005)Google Scholar
[17] Park, C. I., Park, O. O., Lim, J. G., Kim, H. J, Polymer, 42, 74657475 (2001)Google Scholar
[18] Van Krevelen, D. W. Properties of Polymer, 3rd ed.; Elsevier Science: New York, pp: 120 (1997)Google Scholar
[19] Hofmann, W.. Rubber technology handbook, Hanser publishers, Munich Vienna New York, pp: 280 (1989)Google Scholar
[20] Devaux, E., Bourbigot, S., El Achari, A.. J. Appl. Polym. Sci., 86, 24162423 (2002)Google Scholar
[21] Tjong, S. C., Bao, S. P., J. Polym. Sci. Part B: Polym. Phys, 43, 253263 (2005)Google Scholar
[22] Cho, J. W., Paul, D. R.. Polymer, 42, 10831094 (2001)Google Scholar