Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-16T08:29:13.394Z Has data issue: false hasContentIssue false

Mechanical Properties of Sic Whisker Reinforced β-SiAION Composites

Published online by Cambridge University Press:  25 February 2011

C. Yamagishi
Affiliation:
Central Research Laboratory of Nihon Cement Co., Ltd, 1-2-23 Kiyosumi Koto-ku, Tokyo, Japan
J. Hakoshima
Affiliation:
Central Research Laboratory of Nihon Cement Co., Ltd, 1-2-23 Kiyosumi Koto-ku, Tokyo, Japan
S. Nakajoh
Affiliation:
Central Research Laboratory of Nihon Cement Co., Ltd, 1-2-23 Kiyosumi Koto-ku, Tokyo, Japan
N. Miyata
Affiliation:
Central Research Laboratory of Nihon Cement Co., Ltd, 1-2-23 Kiyosumi Koto-ku, Tokyo, Japan
K. Tsukamoto
Affiliation:
Central Research Laboratory of Nihon Cement Co., Ltd, 1-2-23 Kiyosumi Koto-ku, Tokyo, Japan
Get access

Abstract

The mechanical properties of SiC whisker, SiCw, reinforced β-Sialon composite were investigated. β-Sialon with 20 vol% SiCw showed excellent high temperature strength, 610 MPa at 1350°C, and fracture toughness, 5.3 MPa √m (Chevron Notched Beam, CNB, method). This fracture toughness value was an improvement of 75% over that of β-Sialon (monolithic material). This composite also showed excellent oxidation-resistance; the weight gain due to oxidation after 200 hr at 1350°C in dry air was 0.3 mg/cm2, and after oxidation the high temperature strength, 1350°C, was 683 MPa, an improvement over the pre-oxidation value. Also, in high temperature creep testing (200 hr at 1350°C and 300 MPa) deformation of the SiCw reinforced β-Sialon composite, SiCw/β-Sialon was 66% smaller than that of β-Sialon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K.H., J. Mater. Sci., 11, 1135 (1976).Google Scholar
2. Oyama, Y., Jpn. J. Appl. Phys., 11,760 (1972).Google Scholar
3. Oyama, Y. and Kamigaito, S., Yokyo-Kyoukaisi, 80, 327 (1972).Google Scholar
4. Tabata, H., (Proc. 9th Basic Technologies for Future Industries-Fine Ceramics, Tokyo, Japan, 1991) pp. 5.Google Scholar
5. Muntz, D., Himslt, G. and Eschweiler, J., J. Am. Ceram. Soc., 63, 341 (1980).Google Scholar
6. Yamagishi, C., Hakoshima, J., Tsukamoto, K. and Akiyama, Y., J. Japan Soc. Powder and Powder Metall, 37, 1056 (1990).Google Scholar
7. Yamagishi, C., Tsukamoto, K., Hakoshima, J., Shimojima, H. and Akiyama, Y., J. Mat. Sci., 27, 1908 (1992).Google Scholar
8. Becher, P.F., Fuller, E.R. Jr., and Angelinil, P., J. Am. Ceram. Soc., 74, 2131 (1991).Google Scholar
9. Compbeel, G.H., Ruhle, M., Dalgleish, B.J. and Evans, A.G., ibid., 73, 521 (1990).Google Scholar
10. Burjan, S.T., Baldoni, J.G. and Huckabee, M.L., J. Am. Ceram. Soc., 66, 347 (1983).Google Scholar
11. Matsui, T., Komura, O. and Miyake, M., J. Ceram. Soc. Jpn., 99, 1103 (1991).Google Scholar
12. Sajgalik, P. and Dusza, J., J. Mater. Sci., 10, 776 (1991).Google Scholar
13. Ueno, K., Sodeoka, S. and Hirooka, J., J. Ceram. Soc. Jpn., 100, 525 (1992).Google Scholar