Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:56:18.709Z Has data issue: false hasContentIssue false

The Mechanical Properties of FeAl

Published online by Cambridge University Press:  10 February 2011

I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 03781
Get access

Abstract

In the last few years, considerable progress been made in obtaining reproducible mechanical properties data for binary FeAl alloys. Two sets of observations are the foundation of this progress. The first is that the large equilibrium vacancy concentrations that exist in FeAl at high temperature are easily retained during cooling, and that these strongly affect the low-temperature mechanical properties. The second is that room-temperature ductility is adversely affected by water vapor. The purpose of this paper is to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed from the discovery of the above two effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Massalski, T.B., “Binary alloy phase diagrams,” p 112, Metals Park, OH, ASM (1986).Google Scholar
2. Maziasz, P., Goodwin, G.M., Alexander, D.J. and Viswanathan, S. in Nickel, and Aluminides, Iron: Processing, Properties and Applications, (eds. Deevi, S.C. et al.), 157176; 1997, Materials Park, OH, American Society for Materials.Google Scholar
3. Westbrook, J.H., J. Electrochem. Soc., 103, 54 (1956).CrossRefGoogle Scholar
4. Liu, C.T., Lee, E.H., and McKamey, C.G., Scripta Metall., 23, 875 (1989).CrossRefGoogle Scholar
5. Nagpal, P., and Baker, I., Metall. Trans., 21A, 2281 (1990).CrossRefGoogle Scholar
6. Schmidt, B., Nagpal, P., and Baker, I., Proc. MRS, 133, 755 (1989).CrossRefGoogle Scholar
7. Gaydosh, D.J., and Nathal, M.V., Scripta Metall. Mater., 24, 1281 (1990).CrossRefGoogle Scholar
8. Baker, I. and Munroe, P.R., International Materials Reviews, 42 181205 (1997).CrossRefGoogle Scholar
9. Baker, I. and Nagpal, P.: in Processing and Fabrication of Advanced Materials for High Temperature Applications - II, (eds. Srivistan, T.S. and Ravi, V.A.), Warrendale, PA, The Minerals, Metals and Materials Society, 318 (1993).Google Scholar
10. Baker, I. and Nagpal, P.: in Structural Intermetallics (eds. Darolia, R. et al.), Warrendale, PA, The Minerals, Metals and Materials Society, 463473 (1993).Google Scholar
11. Baker, I.: in Processing, Properties and Applications of Iron Aluminides, (eds. Schneibel, J.H. and Crimp, M.A.), Warrendale, PA, The Minerals, Metals and Materials Society, 101115 (1994).Google Scholar
12. Stoloff, N. S. and Liu, C. T.: Intermetallics, 2, 7587 (1994).CrossRefGoogle Scholar
13. Prakash, U., Buckley, R. A., Jones, H., and Sellars, C. M.: ISIJ Int., 31, 11121125 (1991).CrossRefGoogle Scholar
14. Hardwick, D. and Wallwork, G., Rev. High Temp. Mater., 4, 4774 (1978).Google Scholar
15. Baker, I., Nagpal, P., Liu, F., and Munroe, P.R., Acta Metall. Mater., 39, 1637 (1991).CrossRefGoogle Scholar
16. Neumann, J.P., Chang, Y.A., and Lee, C.M., Acta Metall., 24A, 593 (1976).CrossRefGoogle Scholar
17. Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S., Intermetallics, 1, 107 (1993).CrossRefGoogle Scholar
18. Xiao, H., and Baker, I., Acta Metall. Mater., 43, 391 (1995).Google Scholar
19. Yang, Y., and Baker, I., Intermetallics, 6, 167, (1998).CrossRefGoogle Scholar
20. Mendiratta, M.G., Kim, H.K., and Lipsitt, H.A., Metall. Trans. A, 15A, 395 (1984).CrossRefGoogle Scholar
21. Baker, I., and Gaydosh, D.J., Mater. Sci. Eng., 96, 147 (1987).CrossRefGoogle Scholar
22. Munroe, P.R., and Baker, I., J. Mat. Sci., 24, 4246, (1989).CrossRefGoogle Scholar
23. Umakoshi, Y., and Yamaguchi, M., Phil. Mag. A, 44, 711 (1981).CrossRefGoogle Scholar
24. Crimp, M.A., and Vedula, K., Phil. Mag. A, 63, 559 (1991).CrossRefGoogle Scholar
25. Yamagata, T., and Yoshida, H., Mater. Sci. Eng., 12, 95 (1973).CrossRefGoogle Scholar
26. Ray, I.L.F., Crawford, R.C., and Cockayne, D.J.H., Phil. Mag., 21, 1027 (1970).CrossRefGoogle Scholar
27. Crawford, R.C., Phil.Mag., 33, 529(1976).CrossRefGoogle Scholar
28. Yamagata, T., Trans. JIM, 18, 715 (1977).CrossRefGoogle Scholar
29. Takeuchi, S., Phil. Mag.A, 41, 541(1980).CrossRefGoogle Scholar
30. Munroe, P. R., and Baker, I., Acta Metall. Mater., 39, 1011 (1991).CrossRefGoogle Scholar
31. Yoshimi, K., Hanada, S., and Yoo, M.H., Acta Metall. Mater., 43, 4141 (1995).CrossRefGoogle Scholar
32. Yoshimi, K., Hanada, S., and Yoo, M.H., Intermetallics, 4, 159 (1996).CrossRefGoogle Scholar
33. Yang, Y. and Baker, I., Proceedings of the Material Research Society, 460, p. 367 (1997).CrossRefGoogle Scholar
34. Yang, Y., Baker, I., and Martin, P., Phil. Mag. B, (in press).Google Scholar
35. Taylor, A. and Jones, R.M., J. Phys. Chem. Solids, 6, p. 16, (1958).CrossRefGoogle Scholar
36. Huffman, G.P. and Fisher, R.M., J. Applied Physics, 38, p. 735, (1967).CrossRefGoogle Scholar
37. Kouvel, J.S., Magnetism and Metallurgy, Vol.2, Academic Press, New York, p. 523, (1969).Google Scholar
38. Takahashi, S., J. Magnetism and Magnetic Materials, 54–57, p. 1065, (1986).CrossRefGoogle Scholar
39. Takahashi, S. and Umakoshi, Y., J. Magnetism and Magnetic Materials, 90 & 91, p. 735, (1990).CrossRefGoogle Scholar
40. Takahashi, S. and Umakoshi, Y., J. Phys.: Condens. Matter, 3, p. 5805,.CrossRefGoogle Scholar
41. Xiao, H., and Baker, I., Scripta Metall. Mater., 28, 1411 (1993).CrossRefGoogle Scholar
42. Chang, K.M., Metall. Trans. A, 21A, 3027 (1990).CrossRefGoogle Scholar
43. Baker, I., and Gaydosh, D.J., Mater. Sci. Eng., 96, 147 (1987).CrossRefGoogle Scholar
44. Yoshimi, K., and Hanada, S., “Structural Intermetallics,” p475, eds. Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathal, M.V.,. TMS Warrendale, (1993).Google Scholar
45. Guo, J.T., Jin, O., Yin, W.M., and Wang, T.M., Scripta Metall. Mater., 29, 783 (1993).CrossRefGoogle Scholar
46. Yoshimi, K., Masumoto, N., Hanada, S., and Watanabe, S., “Proc. 3rd Japan. Int. SAMPE Symp.,” 1404 (1993).Google Scholar
47. Klein, O., and Baker, I., Scripta Metall. Mater., 30, 1413 (1994).CrossRefGoogle Scholar
48. Yoshimi, K., Hanada, S., and Tokuno, H., Mat. Trans. JIM, 35, 51 (1994).CrossRefGoogle Scholar
49. Baker, I., Xiao, H., Klein, O., Nelson, C., and Whittenberger, J.D., Acta Metall. Mater., 43, 1723 (1995).CrossRefGoogle Scholar
50. Carleton, R.L., George, E.P., and Zee, R.H., Intermetallics, 3, 433 (1995).CrossRefGoogle Scholar
51. George, E.P., Carlton, R.L., Cohron, J., and Zee, R.H., submitted to Intermetallics.Google Scholar
52. Morris, D.G., Phil. Mag., 71, 1281 (1995).CrossRefGoogle Scholar
53. George, E.P., and Baker, I., Phil. Mag. 77, 737, (1998).CrossRefGoogle Scholar
54. Kad, B. and Horton, J.A., Mater. Sci. Eng., 118, 239, (1997).Google Scholar
55. Yoshimi, K., Hanada, S., and Yoo, M.H., Proc. MRS, 460, 313, (1997)CrossRefGoogle Scholar
56. Munroe, P.R., and Baker, I., Phil. Mag., 72, 1301 (1995).CrossRefGoogle Scholar
57. Wiirschum, R., Grupp, C., and Schaefer, H.E., Phys. Rev. Lett., 75, 97 (1995).CrossRefGoogle Scholar
58. Li, X. and Baker, I., Scripta Metall. Mater., 36, 1387, (1997).CrossRefGoogle Scholar
59. Baker, I. and Yang, Y., Mat. Sci. Eng., A239–240, 109 (1997).CrossRefGoogle Scholar
60. Yang, Y., Baker, I., IIIGray, G.T. and Cady, C., Scripta Mater., in press.Google Scholar
61. Baker, I., and Nagpal, P., in “Structural Intermetallics,” 463, eds. Darolia, R., ewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathal, M.V., TMS, Warrendale, Pa (1993).Google Scholar
62. Baker, I., “Processing, Properties and Applications of Iron Aluminides,” p101, eds. Schneibel, J.H. and Crimp, M.A., TMS, Warrendale, Pa. (1994).Google Scholar
63. Liu, C.T., and McKamey, C.G., “High temperature aluminides and intermetallics,” p133, eds. Whang, S.H., Liu, C.T., Pope, D.P. and Steigler, J.O., TMS, Warrendale, Pa., (1990).Google Scholar
64. Liu, C.T., and George, E.P., Scripta Metall. Mater., 24, 1285 (1990).CrossRefGoogle Scholar
65. Liu, C.T., and George, E.P., Proc. MRS, 213, 527 (1991).CrossRefGoogle Scholar
66. Klein, O., Baker, I., and Nagpal, P., Proc. MRS, 213, 609 (1993).Google Scholar
67. Schneibel, J.H., and Jenkins, M.G., Scripta Metall. Mater., 28, 389 (1993).CrossRefGoogle Scholar
68. Schneibel, J.H., Jenkins, M.G. and Maziasz, P.J., Proc. MRS, 288, 549 (1993).CrossRefGoogle Scholar
69. Schneibel, J.H., and Specht, E.D., Scripta Metall. Mater., 31, 1737 (1994).CrossRefGoogle Scholar
70. Specht, P., Brede, M., and Neumann, P., Proc. MRS, 364, 207 (1995).CrossRefGoogle Scholar
71. Specht, P., and Neumann, P., Intermetallic, 3, 365 (1995).CrossRefGoogle Scholar
72. Castagna, A., and Stoloff, N.S., Mater. Sci. Eng., A192/193, 399 (1995).CrossRefGoogle Scholar
73. Pike, L.M. and Liu, C.T., Scripta Mater. 38, p. 1475, (1998).CrossRefGoogle Scholar
74. George, E.P., and Liu, C.T., Proc. MRS, 364, 1131 (1995).CrossRefGoogle Scholar
75. Liu, C.T., “Ordered Intermetallics - Physical Metallurgy and Mechanical Behavior,” p321, eds. Liu, C.T., Cahn, R.W. and Sauthoff, G., Kluwer Publishers, Netherlands, (1992).CrossRefGoogle Scholar
76. Nagpal, P., and Baker, I., Scripta Metall. Mater., 25, 2577 (1991).CrossRefGoogle Scholar
77. Klein, O., and Baker, I., Scripta Metall. Mater., 27, 1823 (1992).CrossRefGoogle Scholar
78. Baker, I., Klein, O., Nelson, C., and George, E.P., Scripta Metall. Mater., 30, 863 (1994).CrossRefGoogle Scholar
79. George, E.P., Yamaguchi, M., Kumar, K.S., and Liu, C.T., Ann. Rev. Mater., 24, 409 (1994).CrossRefGoogle Scholar
80. Gaydosh, D.J., Draper, S.L., Noebe, R.D., and Nathal, M.V., Mater. Sci. Eng., A150, 7 (1992).CrossRefGoogle Scholar
81. Lynch, R.J., Gee, K.A., and Heldt, L.A., Scripta Metall. Mater., 30, 945 (1994).CrossRefGoogle Scholar
82. Nathal, M.V. and Liu, C.T., Intermetallics, 3, 77 (1995).CrossRefGoogle Scholar
83. Chang, K.M., Darolia, R., and Lipsitt, H.A., Acta Metall. Mater., 40, 2727 (1992).CrossRefGoogle Scholar
84. Stoloff, N.S., “Hydrogen Effects on Material Behavior,” TMS, Warrendale, PA, (1994).Google Scholar
85. Stoloff, N.S., and Liu, C.T., Intermetallics, 2, 75 (1995).CrossRefGoogle Scholar
86. George, E.P., and Liu, C.T., Proc. MRS, 364, 1131 (1995).CrossRefGoogle Scholar
87. Pierron, X., and Baker, I., “Proc. Symp. Physical Chemistry of High Temperature Composites, Intermetallics and Metal-Ceramic Systems,” p271,TMS, Warrendale, Pa. (1996).Google Scholar
88. Kasul, D.B., and Heldt, L.A., Metall. Trans., 25A, 1285 (1994).CrossRefGoogle Scholar
89. Camus, G.M., Stoloff, N.S., and Duquette, D. J., Acta Metall., 37, 1497 (1989).CrossRefGoogle Scholar
90. Gleason, N.R., Gerken, C.A., and Strongin, D.R., Applied Surface Science, 72, 215 (1993).CrossRefGoogle Scholar
91. Li, J.C.M., and Liu, C.T., Scripta Metall. Mater., 33, 661 (1995).CrossRefGoogle Scholar
92. Somorjai, G.A., “Chemistry in Two Dimensions: Surfaces,” Cornell Univ. Press, Ithaca NY (1981).Google Scholar
93. Yoo, M.H., and Fu, C.L., Mater. Sci. Eng., A153, 470 (1992).CrossRefGoogle Scholar
94. Nagpal, P., and Baker, I., Mater. Char., 27, 167 (1991).CrossRefGoogle Scholar