Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:48:57.487Z Has data issue: false hasContentIssue false

Mechanical Properties of Cu/Ta Multilayers Prepared by Magnetron Sputtering

Published online by Cambridge University Press:  10 February 2011

Tai D. Nguyen
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Troy W. Barbee Jr.
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Get access

Abstract

The microstructure and mechanical properties of sputtered Cu/Ta multilayers were studied. X-ray diffraction and transmission electron microscopy characterization indicate that both the Ta and Cu in the 2 nm period multilayer are predominantly amorphous, while in longer period samples, the layers are crystalline, with the metastable tetragonal β-Ta observed. No observable microstructure changes upon annealing at 300°C were found. An average Vickers micro-hardness value of about 5.5 GPa was measured, which increases about 5% upon annealing at 300° C. Residual stress in the multilayers and its dependence on thermal annealing are reported. The relationships between microstructure and mechanical properties in the multilayers are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Holloway, K. and Fryer, P. M., Appl. Phys. Lett. 57, 1736 (1990).Google Scholar
2. Oda, M., Ozawa, A., Ohki, S., and Yoshihora, H., Jpn. J. Appl. Phys. 11, 2616 (1990).Google Scholar
3. Oh, J. E., Woollam, J. A., Aylesworth, K. D., Sellmyer, D. J., and Pouch, J. J., J. Appl. Phys. 60, (1986) 4281.Google Scholar
4. Sell, T.; Mehrer, H., Zeitschrift fur Metallkunde 88 (11) 842 (1988).Google Scholar
5. Mizutani, U.; Lee, C. H., Materials Transactions, JIM 36 (2) 210 (1995).Google Scholar
6. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol. 19, 164 (1977).Google Scholar
7. Jankowski, A. F., Bionta, A. F., and Gabriele, R. M., J. Vac. Sci. Technol. A7, 210 (1989).Google Scholar
8. Clevenger, L. A., Mutscheller, A., Harper, J. M. E., Cabral, C. Jr., and Barmak, K., J. of Appl. Phys. 72 (10) 4918 (1992).Google Scholar
9. Parfitt, L. J.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C., in Thin Films - Structure and Morphology, edited by Moss, S. C. et al. (Mater. Res. Soc. Proc., 1997) pp. 385–90.Google Scholar
10. Parfitt, L. J.; Karpenko, O. P.; Rek, Z. U.; Yalisove, S. M.; and others, in Thin Films: Stresses and Mechanical Properties, edited by W. W., Gerberich, H., Gao, J.-E., Sundgren, S. P., Baker (Mater. Res. Soc. Proc., 1997) pp. 505–10.Google Scholar
11. Koyano, T.; Lee, C. H.; Fukunaga, T.; Mizutani, U.; Ikeda, S., Higuchi, Y., Nishikawa, M., Kita, E., and Tasaki, A., J. of Mag. and Mag. Mat. 126 (1–3) 161 (1993).Google Scholar
12. Hoogeveen, R.; Moske, M.; Geisler, H.; Samwer, K., Thin Solid Films 275 (1–2) 203 (1996).Google Scholar
13. Kwon, K.-W., Ryu, C., Sinclair, R., and Wong, S. S., Appl. Phys. Lett. 71 (21) 3069 (1997).Google Scholar
14. Bello, A. F., Buuren, T. Van, Klepeis, J. E., and Barbee, T. W. Jr., presented at the MRS Spring Meeting (1998), and to appear in Application of Synchrotron Radiation Techniques to Materials Science, edited by S., Mini, D., Perry, S., Stock, and L., Terminello.Google Scholar
15. Daniels, B. J., Nix, W. D., and Clemens, B. M., Appl. Phys. Lett. 66 (22) 2969 (1995).Google Scholar
16. Hashimoto, S., Ishihara, M., Sasajima, Y., J. Fac. Eng., Ibaraki University, 43, 75 (1995).Google Scholar