Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:06:36.977Z Has data issue: false hasContentIssue false

Mechanical and Thermal Stability of Heavily Drawn Pearlitic Steel Wire

Published online by Cambridge University Press:  10 February 2011

Etienne Aernoudt
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde (MTM), K.U. Leuven, Belgium
Javier Gil Sevillano
Affiliation:
Centro de Estudios e Investigaciones Tecnicas de Guipuzcoa, San Sebastian, Spain
Hilde Delrue
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde (MTM), K.U. Leuven, Belgium
Jan Van Humbeeck
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde (MTM), K.U. Leuven, Belgium
Piet Watté
Affiliation:
NV Philips Industries, Turnhout, Belgium
Ignace Lefever
Affiliation:
Bekaert Steel Wire Corporation, Kortrijk, Belgium
Get access

Abstract

Having interlamellar spacings on the nanometer scale, there is no doubt about considering heavily drawn pearlitic steel wire as a nano-layered material. This extremely fine structure is of great technical importance: indeed, as the interlamellar distance determines the onset of plastic flow, the wire can be brought to a tensile strength beyond 4000 MPa and is therefore one of the strongest materials on the market nowadays.

At extremely large strains (well beyond ε = 4) and/or at moderate temperatures, the pearlitic steel loses its strength. Several possible failure mechanisms, like fragmentation of the cementite or thermal and strain-induced cementite dissolution, are put forward, but until now, there is no definite understanding of the really active mechanism.

In the present work, the calorimetric differential scanning technique, in combination with thermopower measurements and the high-resolution atomic force microscopy, have turned out to be most promising tools to reveal some of the mechanisms that are responsible for the degradation of the lamellar aggregate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gridnev, V.N. and Gavrilyuk, V.G., Phys. Metals, 4, (3), p. 531, (1982).Google Scholar
2. Gavrilyuk, V.G., Prokopenko, V.G., Razumov, O.N., Phys. Stat. Sol., 53, p. 147, (1979).Google Scholar
3. Tarui, T., Takahashi, T., Ohashi, S., Uemori, R., Wire Industry International, p. 25, (1995).Google Scholar
4. Araujo, F.G.S., Gonzalez, B.M., Cetlin, P.R., Coelho, A.R.Z., Mansur, R.A., Wire Industry International, p. 1, (1992).Google Scholar
5. Languillaume, J., Ph. D. thesis, Institut National Polytechnique de Grenoble, (1995).Google Scholar
6. Baird, J.D., Metall. Rev., 149, (16), p. 1, (1971).Google Scholar
7. Kemp, I.P., Pollard, G., Bramley, A.N., Mat. Sc. & Techn., 6, p. 331, (1990).Google Scholar
8. Yamada, Y., Trans. ISIJ, 16, p. 417, (1976).Google Scholar
9. Cottrell, A.H., Churchman, A.T., Journ. of the Iron and Steel Inst., p. 271, (1949).Google Scholar
10. Abe, H., Scandinavian Journ. of Metallurgy, 13, p. 226, (1984).Google Scholar
11. Campbell, J., Conrad, H., Scripta Metall., 31, (1), p. 69, (1994).Google Scholar
12. Waugh, A.R., Paetke, S., Edmonds, D.V., Metallography, 14, p. 237, (1981).Google Scholar
13. Rudee, M.L., Huggins, R.A., Acta Metall., 12, p. 501, (1964).Google Scholar
14. Goes, B., Aernoudt, E., Sevillano, J. Gil, Meizoso, A. Martin, confidential.Google Scholar
15. Aaron, H.B., Kotler, G.R., Metall. Trans. A, 2, p. 393, (1971).Google Scholar
16. Zener, C., J. Appl. Phys., 21, p. 5, (1950).Google Scholar
17. Cottrell, A.H., Bilby, B.A., Proc. Phys. Soc., 62, p. 49, (1949).Google Scholar
18. Harper, S., Phys. Rev., 83, p. 709, (1951).Google Scholar
19. Lement, B.S. and Cohen, M., Acta Metall., 4, p. 469, (1956).Google Scholar
20. Inoue, A., Ogura, T., Masumoto, T., Trans. Japan Inst. Metals, 17, p. 149, (1976).Google Scholar
21. Cottrell, A.H., Dislocations and Plastic flow in Crystals, Oxford University Press, p. 134, (1953).Google Scholar
22. Dijkstra, L.J., J. Metals, 1, p. 252, (1949).Google Scholar