No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Nicalon fiber is the primary reinforcement in SiC-SiC composites currently produced by a variety of techniques including CVI and polymer infiltration. Low strength retention and dimensional change at high temperatures of the Nicalon fibers limits the choice of manufacturing processes which can be employed to produce low cost SiC-SiC composites. MER has developed a SiC reinforcement based upon the conversion of low cost carbon fabric to SiC via a Chemical Vapor Reaction (CVR) process. These new SiC filaments exhibit excellent creep resistance at temperatures up to 1600°C. SiC-SiC composites were fabricated using different types of graphite fabric converted to SiC fabric utilizing the CVR process combined with a polycarbosilane (PCS) infiltration and CVI densification. In addition, enhancement of the composite through-the-thickness thermal conductivity was accomplished via boron doping of the matrix. A correlation between processing conditions, microstructure and properties of the SiC-SiC composites will be presented.