Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T15:34:02.131Z Has data issue: false hasContentIssue false

Measurement of Micromechanical Properties Using Atomic Force Microscope with Capacitative

Published online by Cambridge University Press:  22 February 2011

Gabi Neubauer
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Sidney R. Cohen
Affiliation:
Chaim Weizmann Postdoctoral Fellow, IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Gary M. McClelland
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Get access

Abstract

A new UHV atomic force microscope for the study of micromechanical properties is described. A capacitance technique is used, which enables simultaneous measurement of forces perpendicular and parallel to the surface (i.e., load and friction), and has low noise down to frequencies below 0.1 Hz. Preliminary results for Ir- and W-tips sliding on graphite and silicon, respectively, demonstrate the capabilities of this new instrument.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bowden, F. P., Moore, A. J. W. and Tabor, D., J. Appl. Phys. 14, 90 (1943).Google Scholar
2. Guo, Q., Ross, J. D. J., and Pollock, H. M., in New Materials Approaches to Tribology: Theory and Applications, MRS Fall Meeting Symposium Proceedings 140, ed. by Pope, L. E., Fehrenbacher, L., and Winer, W. O. (Materials Research Society, Pittsburgh, 1989).Google Scholar
3. for example, see Gane, N. and Bowden, F. P., J. Apph. Phys 39, 1432 (1968); J. Skinner and N. Gane, J. Phys. D 5, 2087 (1972); A. Kohno and S. Hyoda J. Phys. D 7, 1243 (1974); D. Maugis, G. Desalos-Andarelli, A. Heurtel, and R. Courtel, ASLE Transaction 21, 1 (1977); M. D. Pashley, J. B. Pethica, and D. Tabor, Wear 100, 7 (1984).Google Scholar
4. Skinner, J., Gane, N. and Tabor, D., Nature, Phys. Sci. 232, 195 (1971).Google Scholar
5. Walko, R. J., Surface Sci 70, 302 (1978); D. H. Buckley, Surface Effects in Adhesion, Friction, Wear and Lubrication (Elsevier, Amsterdam, 1981).Google Scholar
6. Bailey, A. I. and Courtney-Pratt, J. S., Proc. R. Soc. London A, 227, 500 (1955); J. N. Israelachvili and D. Tabor, Proc. Roy. Soc. London Ser. A 331, 19 (1972); J. N. Israelachvili, and D. Tabor, Nature (London) Phys. Sci., 241, 148 (1973); J. Israelachvili and D. Tabor, Wear 24, 386 (1973); B. J. Briscoe and D. C. B. Evans, Proc. Roy. Soc. London Ser. A 380, 389 (1982).Google Scholar
7. Israelachvili, J. N., McGuiggan, P. M., and Homola, A. M., Science 240, 190 (1989); P. M. McGuiggan, J. N. Israelachvili, M. L. Gee, and A. M. Homola, in New Materials Approaches to Tribology: Theory and Applications, Eds. L. E. Pope, L. Fehrenbacher, and W. O, Winer (MRS, Boston, 1989), to be published.Google Scholar
8. Alsten, J. van and Granick, S., Phys. Rev. Lett. 61, 2570 (1988).Google Scholar
9. Binnig, G., Quate, C. F. and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986); for a review, see P. K. Hansma, V. B. Elings, 0. Marti, and C. E. Bracker, Science 242, 209 (1988).Google Scholar
10. Dürig, U., Gimzewski, J. K., and Pohl, D. W., Phys. Rev. Lett. 57, 2403 (1986); U. Dunrig., O. Züjger, and D. W. Pohl, J. Microscopy (1989) to be published.Google Scholar
11. McClelland, G. M., Erlandsson, R., and Chiang, S., Review of Progress in Quantitative Non-Destructive Evaluation 6B, Thompson, D. O. and Chimenti, D. E., eds., 1307 (1987).Google Scholar
12. Erlandsson, R., McClelland, G. M., Mate, C. M., and Chiang, S., J. Vac. Sci. Technol. A, 6, 266 (1988).Google Scholar
13. Martin, Y., Williams, C. C. and Wickramasinghe, H. K., J. Appl. Phys. 61, 4723 (1987).Google Scholar
14. Rugar, D., Mamin, H. J., Erlandsson, R., Stern, J. E., and Terris, B. D., Rev. Sci. Instrum. 59, 2337 (1988).Google Scholar
15. Sarid, D., lams, D., and Weissenberger, V., and Bell, L. S., Optics Lett., 13, 1057 (1988).Google Scholar
16. Meyer, G. and Amer, N. M., Appl. Phys. Lett. 53, 1045 (1988).Google Scholar
17. Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P. K., Longmire, Matt, and Gurley, J., J. Appl. Phys. 65, 164 (1989).Google Scholar
18. Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S., Phys. Rev. Lett. 59, 1942 (1987).Google Scholar
19. Erlandsson, R., Hadziioannou, G., Mate, C. M., McClelland, G. M. and Chiang, S., J. Chem. Phys. 89, 5190 (1988).Google Scholar
20. Kaneko, R., Nonaka, K., and Yasuda, K., J. Vac. Sci. Technol. A 6, 291 (1988).Google Scholar
21. Lancaster, J. K., ASLE Transactions 18, 187 (1975); P. J. Bryant, P. L. Gutshall, and L. H. Taylor, Wear 7, 118 (1964); G. W. Rowe, Wear 3, 274.Google Scholar
22. Neubauer, G. and McClelland, G. M., unpublished.Google Scholar
23. Neubauer, G., Cohen, S. R., and McClelland, G. M., to be published.Google Scholar
24. Rugar, D., and Mamin, H. J., private communication.Google Scholar
25. Martin, Y., Abraham, D. W., and Wickramasinghe, H. K., Appl. Phys. Lett. 52, 1103 (1988).Google Scholar
26. Mamin, H. J., Ganz, E., Abraham, D. W., Thomson, R. E., and Clarke, J., Phys. Rev., B 34, 9015 (1986).Google Scholar
27. Nicklow, R., Wakabayashi, N., and Smith, H. G., Phys. Rev. B 5, 4951 (1972).Google Scholar
28. Seldin, E. S., in Proceedings of Ninth Biennial Conference on Carbon, Chestnut Hill, Massachusetts, 1969 (Defense Ceramic Information Center, Columbus, Ohio, 1969) p. 59.Google Scholar
29. Burnham, N. A., and Colton, R. J., J. Vac. Sci. Technol. A July/August 1989, in press.Google Scholar
30. Moore, A. W., Chem. and Phys. of Carbon, 11, 69 (1973); 17, 233 (1981).Google Scholar
31. Pethica, J. P., Phys. Rev. Lett. 57, 3235 (1986).Google Scholar
32. Batra, I. P. and Ciraci, S. J. Vac. Sci Technol. A 6, 313 (1988); F. F. Abraham, I. P. Batra, and S. Ciraci, Phys. Rev. Lett. 60, 1314 (1988); F. F. Abraham and I. P. Batra Surf. Sci. Lett. 209, L125 (1989).Google Scholar
33. Mate, C. M., Erlandsson, R., McClelland, G. M., and Chiang, S., Surface Sci. 208, 473 (1989).Google Scholar
34. Tiedje, T., Varon, J., Deckman, H., and Stokes, J., J. Vac. Sci. Technol. A 6, 372 (1988).Google Scholar
35. Coombs, J. H. and Pethica, J. B., IBM J. Res. Develop. 30, 455 (1986).Google Scholar
36. Soler, J. M., Baro, A. M., Garcia, N., and Rohrer, H., Phys. Rev. Lett. 57, 444 (1986).Google Scholar
37. Yamada, H., Fujii, T., and Nakayama, K., J. Vac. Sci. Technol. A 6, 293 (1988).Google Scholar
38. Mate, C. M., Erlandsson, R., McClelland, G. M., and Chiang, S., J. Vac. Sci. Tech. A 6, 575 (1988).Google Scholar
39. Stern, J. E., Terris, B. D., Mamin, H. J., and Rugar, D., Appl. Phys. Lett. 53, 2717 (1988); AFM studies of contact electrification have recently been reported by B. D. Terris, J. E. Stern, D. Rugar, and J. J. Mamin, (to be published).Google Scholar
40. Lowell, J. and Rose-Innes, A. C., Adv. Phys. 29, 947 (1980).Google Scholar
41. Bradley, R. S., Philos. Mag. 13, 853 (1932).Google Scholar
42. Derjaguin, B. V., Kolloid Z. 69, 155 (1934).Google Scholar
43. Derjaguin, B. V., Muller, V. M. and Toporov, Yu. P., J. Colloid Interface Sci. 53, 314 (1975).Google Scholar
44. Muller, V. M., Yushchenko, V. S. and Derjaguin, B. V., J. Colloid Interface Sci. 77, 91 (1980).Google Scholar
45. Muller, V. M., Derjaguin, B. V. and Toporov, Yu. P., Colloids Surf. 7, 251 (1983).Google Scholar
46. Johnson, K. L., Kendall, K. and Roberts, A. D., Proc. Roy. Soc. Ser. A, 324, 301 (1971).Google Scholar
47. Kaelble, D. H., Physical Chemistry of Adhesion (Wiley-lnterscience, New York, 1971), p.146.Google Scholar