Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:15:59.783Z Has data issue: false hasContentIssue false

MBE-grown NiyMg1-yO and ZnxMg1-xO Thin Films for Deep Ultraviolet Optoelectronic Applications

Published online by Cambridge University Press:  31 January 2011

Jeremy West Mares
Affiliation:
[email protected], University of Central Florida, CREOL, The College of Optics and Photonics, 32816, Florida, United States
Ryan Casey Boutwell
Affiliation:
[email protected], University of Central Florida, CREOL, The College of Optics and Photonics, 32816, Florida, United States
Matthew Thomas Falanga
Affiliation:
[email protected], University of Central Florida, CREOL, The College of Optics and Photonics, 32816, Florida, United States
Amber Scheurer
Affiliation:
[email protected], University of Central Florida, CREOL, The College of Optics and Photonics, 32816, Florida, United States
Winston Vaughan Schoenfeld
Affiliation:
[email protected], University of Central Florida, CREOL, The College of Optics and Photonics, 32816, Florida, United States
Get access

Abstract

We report on the heteroepitaxial growth of high-quality single crystal cubic ZnxMg1-xO and NiyMg1-yO thin films by radio frequency oxygen plasma-assisted molecular beam epitaxy (RF-MBE). Film compositions over the ranges x = 0 to x = 0.65 and y = 0 to y = 1 have been grown on lattice-matched MgO (100) and characterized optically, morphologically, compositionally, and electrically. Both of these ternary materials are shown to have bandgaps which vary directly as a function of transition metal (Ni or Zn) concentration. Optical transmission measurements of NiyMg1-yO show the bandgap to shift continuously over the approximate range 3.5 eV (for NiO) to 4.81 eV (for y=0.075). Similarly, the bandgap of cubic ZnxMg1-xO is shifted from about 4.9 eV (for x = 0.65) to 6.25 eV (for x=0.12). Films exhibit good morphological quality and typical roughness of NiyMg1-yO films is 5 Å while that of ZnxMg1-xO is less than 15 Å, as measured by atomic force microscopy (AFM). X-ray diffraction (XRD) is employed to confirm crystal orientation and to determine the films' lattice constants. Film compositions are interrogated by Rutherford Backscattering (RBS) and electrical characterization is made by room-temperature Hall measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, N. B. and Sui, C. H., Mater. Sci. Eng., B, 126, 16 (2006).10.1016/j.mseb.2005.08.112Google Scholar
2 Kim, J. W., Kang, H. S., Kim, J. H., et al., J. Appl. Phys., 100, 5 (2006).Google Scholar
3 Kuzmin, A. and Mironova, N., J. Phys. Condens. Matter, 10, 7937 (1998).10.1088/0953-8984/10/36/004Google Scholar
4 Bundesmann, C., Rahm, A., Lorenz, M., et al., J. Appl. Phys., 99, 113504 (2006).10.1063/1.2200447Google Scholar
5 Choopun, S., Vispute, R. D., Yang, W., et al., Appl. Phys. Lett., 80, 1529 (2002).10.1063/1.1456266Google Scholar
6 Hullavarad, S. S., Hullavarad, N. V., Pugel, D. E., et al., J. Phys. D: Appl. Phys., 40, 4887 (2007).10.1088/0022-3727/40/16/020Google Scholar
7 Schmidt, R., Rheinlander, B., Schubert, M., et al., Appl. Phys. Lett., 82, 2260 (2003).10.1063/1.1565185Google Scholar
8 Schmidt-Grund, R., Schubert, M., Rheinländer, B., et al., Thin Solid Films, 455-456, 500 (2004).10.1016/j.tsf.2003.11.249Google Scholar
9 Look, D. C., Mater. Sci. Eng., B, 80, 383 (2001).10.1016/S0921-5107(00)00604-8Google Scholar
10 Look, D. C., Reynolds, D. C., Sizelove, J. R., et al., Solid State Commun., 105, 399 (1998).10.1016/S0038-1098(97)10145-4Google Scholar
11 Ozgur, U., Alivov, Y. I., Liu, C., et al., J. Appl. Phys., 98, 1 (2005).10.1063/1.1992666Google Scholar
12 Pearton, S., Norton, D., Ip, K., et al., J. Vac. Sci. Technol., B, 22, 932 (2004).10.1116/1.1714985Google Scholar
13 Chen, X., Ruan, K., Wu, G., et al., Appl. Phys. Lett., 93, 112112 (2008).10.1063/1.2987514Google Scholar
14 Choi, J.-M. and Im, S., Appl. Surf. Sci., 244, 435 (2005).10.1016/j.apsusc.2004.09.152Google Scholar
15 Joshi, U. S., Matsumoto, Y., Itaka, K., et al., Appl. Surf. Sci., 252, 2524 (2006).10.1016/j.apsusc.2005.03.239Google Scholar
16 Lalevic, B., Leung, B., and N, Fuschill., Bulletin of the American Physical Society, 17, 246 (1972).Google Scholar
17 Lany, S., Osorio-Guillen, J., and Zunger, A., Phys. Rev. B: Condens. Matter, 75, 241203 (2007).10.1103/PhysRevB.75.241203Google Scholar
18 Salem, A. M., Mokhtar, M., and El-Shobaky, G. A., Solid State Ionics, 170, 33 (2004).10.1016/j.ssi.2004.01.034Google Scholar
19 Vygranenko, Y., Wang, K., and Nathan, A., Appl. Phys. Lett., 89, 172105 (2006).10.1063/1.2364269Google Scholar
20 Oka, K., Yanagida, T., Nagashima, K., et al., J. Appl. Phys., 104, 013711 (2008).10.1063/1.2952012Google Scholar
21 Chen, Y., Kolopus, J. L., and Sibley, W. A., Physical Review, 186, 865 (1969).10.1103/PhysRev.186.865Google Scholar
22 Summers, G. P., Wilson, T. M., Jeffries, B. T., et al., Phys. Rev. B: Condens. Matter, 27, 1283 (1983).10.1103/PhysRevB.27.1283Google Scholar