Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T05:14:11.096Z Has data issue: false hasContentIssue false

The MBE Growth and Optical Quality of BaTiO3 and SrTiO3Thin Films on MgO

Published online by Cambridge University Press:  15 February 2011

R. A. McKee
Affiliation:
Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-6118
F. J. Walker
Affiliation:
Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-6118
E. D. Specht
Affiliation:
Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-6118
K. B. Alexander
Affiliation:
Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-6118
Get access

Abstract

High quality epitaxial BaTiO3 and SrTiO3 have been grown on MgO, stabilized at a one unit cell height, and grown to film thicknesses of 0.5 - 0.7 μm. These relatively thick films remain adherent when thermally cycled between growth temperatures and room temperature, are crack free with high optical quality, and have both in-plane and out-of-plane X-ray rocking curves of 0.3–0.5°. These films have been grown using molecular beam epitaxy (MBE) methods starting with the TiO2 layer of the perovskite structure. The TiO2-Iayer/MgO interface uniquely satisfies electrostatic requirements for perovskite heteroepitaxy and provides the template structure that leads to the high quality films that are obtained. Wavelength dependence of optical loss has been characterized between 475 nm and 705 nm with loss coefficients < 1dB/cm being obtained at the He-Ne wavelength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Kwo, J., Hong, M., Trevor, D.J., Fleming, R.M., White, A.E., Farrow, R.C., Kortan, A.R. and Short, K.T., Appl. Phys. Lett. 53, 2683(1988).CrossRefGoogle Scholar
2) Li, Q., Meyer, O., Xi, X., Geerk, J. and Linker, G., Appl. Phys. Left. 55, 310(1989).CrossRefGoogle Scholar
3) Moeckly, B.H., Russek, S.E., Lathrop, D.K., Buhrman, R.A., Li, Jian and Mayer, J.W., Appl. Phys. Lett. 57, 1687(1990).Google Scholar
4) Kanai, M., Kawai, T. and Kawai, S., Appl. Phys. Lett. 57,198(1990).Google Scholar
5) Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connel, G. A. N., Boyce, J. B. and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
6) lijima, K., Kawashima, S. and Ueda, I., Jpn. J. Appl. Phys. 24,482(1985).Google Scholar
7) Fujimoto, K., Kobayashi, Y. and Kubota, K., Thin Solid Films 169, 249(1989).Google Scholar
8) Surowiak, Z., Nikitin, Y.S., Biryukov, S.V., Golovko, I.I., Mukhortov, V.M. adn Dudkevich, V.Po., Thin Solid Films 208, 76(1992).Google Scholar
9) Feng, Z.C., Kwak, B.A., Erbil, A. and Boatner, L.A., Appl. Phys. Lett. 62, 349(1993).Google Scholar
10) Lu, H.A., Wills, L.A., Wessels, G.W., Lin, W.P., Zhang, T.G., Wong, G.K., Neumayer, D.A. and Marks, T.J., Appl. Phys. Left. 62,1314(1993).Google Scholar
11) Glass, A.M., MRS Bull. Aug., 16(1988).Google Scholar
12) McKee, R.A., Walker, F.J., Specht, E.D., Jellison, G.E. Jr., and Boatner, L.A., Phys. Rev. Lett., in press.Google Scholar
13) Walker, F.J., McKee, R.A., Yen, Huan-wun and Zelmon, D.E., submitted to Appl. Phys. Lett.,(1993).Google Scholar
14) Tien, P. K., Ulrich, R., and Martin, R. J., Appl. Phys. Lett. 14, 291 (1969); and P. K. Tien, Appl. Optics 10, 2395 (1971).Google Scholar
15) Marcuse, D., Theory of Dielectric Optical Waveguides, (1974, Academic Press, New York).Google Scholar
16) Pauling, L., The Nature of the Chemical Bond, 2nd ed. (Cornell University Press, Ithaca, N.Y., 1948).Google Scholar
17) Levin, E.M., Robbins, C.R. and McMurdie, H.F., Phase Diagrams for Ceramists, (The American Ceramic Society, Columbus, Ohio, 1964).Google Scholar
18) Cotter, M., Cambell, S. and Egdell, R.G., Surface Science 197, 208(1988).Google Scholar