Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:29:52.159Z Has data issue: false hasContentIssue false

Materials Interactions Relating to Long-Term Geologic Disposal of Nuclear Waste Glass

Published online by Cambridge University Press:  28 February 2011

Ned E. Bibler
Affiliation:
E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, South Carolina 29808
Carol M. Jantzen
Affiliation:
E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, South Carolina 29808
Get access

Abstract

In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs. anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parker, F. L., Broshears, R. E., and Pasztor, Janos, “The Disposal of High-Level Radioactive Waste 1984, Volume I,” The Beijer Institute, Stockholm, Sweden (October 31, 1984).Google Scholar
2. Mendel, J. E., “Final Report of the Defense High-Level Waste Leaching Mechanisms Program,” PNL-5157, Pacific Northwest Laboratory, Richland, WA 99352 (1984).CrossRefGoogle Scholar
3. Lambert, S. J., Barr, G. E., and Carter, J. A., International Svmoosium on Isotooe Hydrology, IAEA SM-220/32, 645-660(1979).Google Scholar
4. Ballou, L. B., Proceeding of the 1983 Civilian Waste Management Information Meetincg U. S. Department of Energy Report CONF-831217 (1984).Google Scholar
5. Strachan, D. M., Pederson, L. R., and Lokken, R. O., “Results of Long-Term Interaction and Modeling of SRL-131 Glass with Aqueous Solutions,” PNL-5654. Pacific Northwest Laboratory, Richland, WA (1985).Google Scholar
6. Bazan, F. and Rego, J., “Parametric Testing of a DWPF Borosilicate Glass,” Scientific Basis for Nuclear Waste Management. VIII Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA 303310(1984).Google Scholar
7. Bibler, N. E., Wicks, G. G., and Oversby, V. M., “Leaching Savannah River Plant Nuclear Waste Glass in a Saturated Tuff Environment,” Scientific Basis for Nuclear Waste Management. V Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA 247256 (1984).Google Scholar
8. Bates, J. K. and Oversby, V. M., “The Behavior of Actinide Containing Glasses During Gamma Irradiation in a Saturated Tuff Environment;” Scientific Basis for Nuclear Waste Management, VIII. Jantzen, C. M. et al. (Eds.) Materials Research Society, PA, 257264 (1984).Google Scholar
9. Wicks, G. G., “Nuclear Waste Glasses”, in Treatise on Materials Science and Technologv, Glass IV, Tomozawa, M. and Doremus, R. H. (Eds.), Academic Press, Inc., Vol. 26, p. 89 (1985).Google Scholar
10. , Daniels et al. , “Summary Report on Geochemistry of Yucca Mountains and Environs,” LA-9328-MS (1983).Google Scholar
11. Wicks, G. G., Robnett, B. M., and Rankin, W. D., “Chemical Durability of Glass Containing SRP Waste-Leachability Characteristics, Protective Layer Formation, and Repository System Interactions,” Scientific Basis for Nuclear Waste Management, Lutze, V W. (Ed.), Elsevier Science Publishing Co., New York, 1524(1982).Google Scholar
12. Bazan, F. and Rego, J. H., “The Tuff Reaction Vessel Experiment,” UCRL-53735, Lawrence Livermore National Laboratory, Livermore, CA 94550 (1986).Google Scholar
13. Jones, A. R., “Radiation-Induced Reactions in the N2-02-H20 System,” Rad. Res., 10, 655 (1959).Google Scholar
14. Barkatt, Aa., Barkatt, Al. and Sousanpour, W., “Effects of Gamma Radiation on the Leaching Kinetics of Various Nuclear Waste-form Materials,” Nature (London), 300, 339 (1982).Google Scholar
15. McVay, G. L. and Pederson, L. R., “The Effect of Gamma Radiation on Glass Leaching,” J. Amer. Cer. Soc. 64, 154158 (1981).CrossRefGoogle Scholar
16. Bates, J. K., Fischer, D. L., and Gerding, T. J., “The Reaction of Glass During Gamma Irradiation in a Saturated Tuff Environment, Part 1, SRL 165 Glass,” ANL-85-62 Argonne National Laboratory, Argonne, IL (1986).Google Scholar
17. Burns, W. G., Hughes, A. E., Marfeles, J. A. C., Nelson, R. S., and Stonehayn, A. M., “Effects of Radiation on the Leach Rates of Vitrified Radioactive Waste”, J. Nucl. Mater. 107, 245 (1982).Google Scholar
18. Bibler, N. E., “Leaching Fully Radioactive SRP Nuclear Waste Glass in Tuff Groundwater in Stainless Steel Vessels,” Advances in Ceramics, V. 42, American Ceramic Society, Columbus, Ohio (1986), In Press.Google Scholar
19. Bates, J. K. and Gerding, T. J., “NNWSI Waste Form Performance Test Development” Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. (Eds), Materials Research Society, Pittsburgh, PA 295302 (1984).Google Scholar
20. Bates, J. K. and Gerding, T. J., “One-Year Results of the NNWSI Unsaturated Test Procedure: SRL 165 Glass Application“, Argonne National Laboratory, Argonne, Illinois, ANL-85-41 (1986).Google Scholar
21. Apted, M. J., McVay, G. L., and Wald, J. W., “Release of Actinides from Defense Waste Glass Under Simulated Repository Conditions,” Nuclear Technologl, 73., 165178(1986).Google Scholar
22. McGrail, B. P., “Waste Package Component Interactions with Savannah River Plant Defense Waste Glass in a Low-Magnesium Salt Brine,” Nuclear Technology, 75, 168186 (1986).Google Scholar
23. Shade, J. W., Pederson, L. R., and McVay, G. L., “Waste Glass-Metal Interactions in Brines”, Advances in Ceramics,V.8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceramic Society, Columbus, OH, 358367 (1984).Google Scholar
24. Kim, J. I., Treiber, W., Lierse, Ch., and Offermann, P., “Solubility and Colloid Generation of Plutonium from Leaching of a HLW Glass in Salt Solutions”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA, 359368(1985).Google Scholar
25. Pederson, L. R. and McVay, G. L., “Effect of Gamma Radiolysis on Waste Glass Leaching on Brines”, Advances in Ceramics,V.8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceramic Society, Columbus, OH, 4956 (1984).Google Scholar
26. Klaffky, R. W., Swyler, K. T., and Levy, P. W., Ceramics in Nuclear Waste Management, Chikalla, T. D. and Mendel, J. E. (Eds.), CONF-790430, U. S. Department of Energy, Washington, DC, 310314 (1979).Google Scholar
27. Levy, P. W., Swyler, K. T. and Klaffky, R. W., J. de Physique, 41, Supplement Colloque 16, 344 (1980).Google Scholar
28. Panno, S. V. and Soo, P., “Potential Effects of Gamma Irradiation on the Chemistry and Alkalinity of Brine in High-Level Nuclear Waste Repositories in Rock Salt,” Nuclear Technology, 67, 268281 (1984).Google Scholar
29. Rickertsen, L. D. and Claiborne, H. C., “Expected Environments for a Defense High Level Waste Repository in Salt,” U.S. DOE Report ORNL/TM-7597, Oak Ridge National Laboratory, Oak Ridge(1981).Google Scholar
30. Pederson, L. R. “Chemical Implications of Heat and Radiation Damage to Rock Salt”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA,701708 (1985).Google Scholar
31. Scheetz, B. E., Komarneni, S., Smith, D. K., Anderson, C. A. F., Atkinson, S. D. and McCarthy, G. J. “Hydrothermal Interaction of Simulated Nuclear Waste Glass in the Presence of Basalt,” Scientific Basis for Nuclear Waste Management, II Northrup, C. J. M. (Ed.) Plenum Press, New York, 207214 (1980).Google Scholar
32. Buckwalter, C. Q. and Pederson, L. RInhibition of Nuclear Waste Glass Leaching by Chemisorption”, J. Am. Ceram. Soc. 65[9], 431436 (1982).Google Scholar
33. Barkatt, A., Sousanpour, W., Barkatt, A., and Boromand, M. A. “Effects of Metals and Metal Oxides on the Leaching of Nuclear Waste Glasses”, Scientific Basis for Nuclear Waste Management VII, McVay, G.L. (Ed.) Elsevier Press, New York, 689696 (1984).Google Scholar
34. McVay, G. L. and Buckwalter, C. O., “Effect of Iron on Waste-Glass Leaching”, J. Am. Ceram. Soc. 66[3], 170174 (1983).Google Scholar
35. Jantzen, C. M. “Effects of Eh (Oxidation Potential) on Borosilicate Waste Glass Durability,” Advances in Ceramics, V.8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceramic Society, Columbus, OH, 385393 (1984).Google Scholar
36. Jantzen, C. M. “Methods of Simulating Low Redox Potential (Eh) for a Basalt Repository”, Scientific Basis for Nuclear Waste Management, VI, McVay, G. L. (Ed.) Elsevier Press, New York, 613621 (1984).Google Scholar
37. Peters, R. D. and Diamond, H., “Actinide Leaching from Waste Glass: Air Equilibrated Versus Deaerated Conditions”, PNL-3971 Battelle Pacific Northwest Laboratories, Richland, Washington (October, 1981).CrossRefGoogle Scholar
38. Khalil, M. Y. and White, W. B. “Dissolution of Technetium from Nuclear Waste Forms”, Scientific Basis for Nuclear Waste Management, VII, McVay, G. L. (Ed.) Elsevier Press, New York, 655661 (1984).Google Scholar
39. Manara, A., Lanza, F., Ceccone, G., Mea, G. Della, and Salvagno, G., “Application of XPS and Nuclear Technique to the Study of the Gel Layers Formed Under Different Redox Conditions on Leached Glasses”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. . (Eds.), Materials Research Society, Pittsburgh, PA, 6371 (1985).Google Scholar
40. Jantzen, C. M. and Bibler, N. E. “The Role of Groundwater Oxidation Potential and Radiolysis on Waste Glass Performance in Crystalline Repository Environments,” Scientific Basis for Nuclear Waste Management, IX, Werme, L. O. (Ed.) Materials Research Society, Pittsburgh, PA, 219230 (1986).Google Scholar
41. Jantzen, C. M. and Wicks, G. G. “Control of Oxidation Potential for Basalt Repository Simulation Tests”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. . (Eds.), Materials Research Society, Pittsburgh, PA, 2935 (1985).Google Scholar
42. Lane, D. L., Jones, T. E., and West, M. H.Preliminary Assessment of Oxygen Consumption and Redox Conditions in a Nuclear Waste Repository in BasaltGeochemical Behavior of Disposed Radioactive Waste, ACS Symposium Series 246, 181195 (1984).Google Scholar
43. Pine, G. L. and Jantzen, C. M.Implications of One-Year Basalt Weathering/Reactivity Study for a Basalt Repository Environment”, E.I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC 29808 (in press).Google Scholar
44. Schramke, J. A., Simonson, S. A., and Coles, D. G. “237 Np and 239 Pu Solution Behavior During Hydrothermal Testing of Simulated Nuclear Waste Glass with Basalt and Steel”, Scientific Basis for Nuclear Waste Management, VIII., Jantzen, C. M. et al. . (Eds.), Materials Research Society, Pittsburgh, PA, 343350 (1985).Google Scholar
45. Coles, D. G. and Apted, M. J. “The Behavior of 99Tc in Doped-Glass/Basalt Hydrothermal Interactions Tests” Scientific Basis for Nuclear Waste Management,VII, McVay, G. L. (Ed.) Elsevier Press, New York, 129136 (1984).Google Scholar
46. Apted, M. J. and Myers, J.Comparison of the Hydrothermal Stability of Simulated Spent Fuel and Borosilicate Glass in a Basaltic Environment”, RHO-BW-ST-38P, Rockwell Hanford Operations, Richland, WA (July, 1982).Google Scholar
47. Coles, D. G., Simonson, S. A., Thomas, L.E., Schramke, J. A., and McKinley, S. G. “Investigation of the Hydrothermal Interaction of 99Tc-Doped Glass with Basalt Repository Nuclear Waste Package Components”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C.M. et al. . (Eds.), Materials Research Society, Pittsburgh, PA, 323332 (1985).Google Scholar
48. McGrail, B. P. “Hydrothermal Waste Package Interactions with Methane-Contining Basalt Groundwater”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. .(Eds.), Materials Research Society, Pittsburgh, PA, 459466 (1985).Google Scholar
49. Schuman, R. P. “Leach Testing in Simulated Repository Groundwaters”, Waste Management 84, Amer. Nuclear Society, Post, R.G. (Ed.), The Arizona State University, 481488(1984).Google Scholar
50. Ishiguro, K., Sasaki, N., Kashihara, H., and Yamamoto, M. “Effects of Rocks and Backfill Materials on Waste Glass Leaching”, Scientific Basis for Nuclear Waste Management, IX, Werme, L.O. (Ed.), Materials Research Society, Pittsburgh, PA, 247254 (1986).Google Scholar
51. Bart, G., Aerne, E. T., Grauer, R., Linder, H., Z'Berg, D., and Zwicky, H. U. “Surface Film Characterization of Corroded HLW Glass Specimens”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. .(Eds.), Materials Research Society, Pittsburgh, PA, 213220 (1985).Google Scholar
52. Hermansson, H. P., Christensen, H., Clark, D. E., Bjorner, I. K., Yokoyama, H., and Werme, L. “Static Leaching of Radioactive Glass Under Conditions Simulating a Granitic Repository for High-Level Waste: Phase I” Scientific Basis for Nuclear Waste Management, VII, McVay, G. L. (Ed.), Elsevier Press, New York, 671679 (1984).Google Scholar
53. Yokoyama, H., Hermansson, H. P., Christensen, H., Bjorner, I. K., and Werme, L. O. “Corrosion of Simulated Nuclear Waste Glass in a Gamma Radiation Field”, Scientific Basis for Nuclear Waste Manaaement. VIII. Jantzen, C.M. et al. .(Eds.), Materials Research Society, Pittsburgh, PA, 601608 (1985).Google Scholar
54. Wikberg, P. “The Assessment of Reducing Conditions at Depth in Granitic Rock”, Scientific Basis for Nuclear Waste Management, IX, Werme, L. O. (Ed.), Materials Research Society, Pittsburgh, PA, 137144 (1986).Google Scholar
55. Werme, L. O., Hench, L. L., Lodding, A. “Nuclear Waste Glass Interfaces After 1 Year Burial in Stripa”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. . (Eds.) Materials Research Society, Pittsburgh, PA, 3744 (1985).Google Scholar
56. Ewart, F. T., Morris, J. B., Severn, J., Sharpe, B. M., and Thomason, H. P. “The Source Term for the Release of Nuclides from a Radioactive Waste Repository: I. Vitrified Waste in Granite”, Scientific Basis for Nuclear Waste Management, VI., McVay, G. L. (Ed.) Elsevier Press, New York, 171178 (1984).Google Scholar
57. Savage, D.The Geochemical Interactions of Simulated Borosilicate Waste Glass, Granite and Water at 100-350oC and 50MPa”, Nuclear and Chemical Waste Management, 6, 1539 (1986).CrossRefGoogle Scholar
58. Zhu, B. F., Clark, D. E., Hench, L. L., Wicks, G. G., and Werme, L. O. “One-Year Leaching of Three SRL Glasses in Granite”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA, 187194 (1985).Google Scholar
59. Hench, L. L., Lodding, A., and Werme, L. O. “Analysis of One-Year in-situ Burial of Nuclear Waste Glasses in Stripa”, Advances in Ceramics,V.8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceramic Society, Columbus, OH, 310323 (1984).Google Scholar
60. Hench, L. L., Werme, L. O., and Lodding, A. “Burial Effects on Nuclear Waste Glass”, Scientific Basis for Nuclear Waste Management, Lutze, V. W. (Ed.), Elsevier Press, New York, 153162 (1982).Google Scholar
61. Nogues, J. L., Vernaz, E. Y., Jaquet-Francillon, N., and Pasquini, S. “Alterability of the French LWR Solution Reference Glass in Repository Conditions”, Scientific Basis for Nuclear Waste Management, VIII, Jantzen, C. M. et al. (Eds.), Materials Research Society, Pittsburgh, PA, 195204 (1985).Google Scholar
62. Werme, L. O., Hench, L. L. and Lodding, A. “Effect of Overpack Materials on Glass Leaching in Geological Burial”, Scientific Basis for Nuclear Waste Management, Lutze, V W. (Ed.) Elsevier Press, New York, 135144 (1982).Google Scholar
63. Clark, D. E., Zhu, B. F., Robinson, R. S., and Wicks, G. G., “Preliminary Report on a Glass Burial Experiment in Granite”, Advances in Ceramics,V.8, Wicks, G.G. and Ross, W.A. (Eds.), Am. Ceramic Society, Columbus, OH, 324336 (1984).Google Scholar