Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T11:49:33.606Z Has data issue: false hasContentIssue false

Material Properties in Codimension > 0: Graphene Edge Properties

Published online by Cambridge University Press:  01 February 2011

Paulo Sergio Branicio
Affiliation:
[email protected]@gmail.com, Institute of High Performance Computing, Materials Theory and Simulation Laboratory, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore, +6564191237, +6564632536
David J Srolovitz
Affiliation:
[email protected], Institute of High Performance Computing, Materials Theory and Simulation, Singapore, Singapore
Get access

Abstract

When materials are very thin in one or more dimensions, their equilibrium shapes are often curved/bent. Such shapes commonly represent a compromise between elastic strain energy and other thermodynamic forces (e.g. related to surface stresses, electrostatic interactions, or adsorption). Examples include ZnO and SnO2 nanobelts, silica/carbonate helicoids, and graphene sheets and nanoribbons. Here, we demonstrate that when the equilibrium shape of a nanomaterial is not flat/straight, important fundamental material properties may be orders of magnitude different from their bulk counterparts. We focus here primarily on the graphene edges. Graphene in three dimensions is a codimension c = 1 material; the codimension is c = D – d = 3 – 2 = 1, where D is the dimensionality of the space in which the material is embedded and d is the dimensionality of the object. By contrast, a flat graphene sheet has c = 2 – 2 = 0. We use the REBO-II interatomic potential to calculate the edge orientation dependence of the edge energy and edge stresses of graphene with c = 0 and c = 1. The edge stress for all edge orientations is compressive with c = 0. Both edge energy and stresses are in reasonable agreement with DFT calculations. The compressive edge stresses in c = 0 lead to edge buckling (out-of-the-plane of the graphene sheet) for all edge orientations (c = 1). The edge buckling in c = 1 reduces all edge energies and dramatically reduces all edge stresses to near zero (more than an order of magnitude drop). We also report the effect of codimension on the free energy and entropy of a graphene sheet and the elastic properties of ZnO nanohelices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kong, X. Y. Wang, Z. L. Nano Letters 3, 16251631 (2003).Google Scholar
2 Pan, Z. W. Dai, Z. R. Wang, Z. L. Science 291, 19471949 (2001).10.1126/science.1058120Google Scholar
3 Bets, K. Yakobson, B. Nano Res 2, 161166 (2009).Google Scholar
4 Garcia-Ruiz, J. M., Melero-Garcia, E., Hyde, S. T. Science 323, 362365 (2009).10.1126/science.1165349Google Scholar
5 Geim, A. K. Novoselov, K. S. Nature Mater 6, 183191 (2007).Google Scholar
6 Gass, M. H. Bangert, U. Bleloch, A. L. Wang, P. Nair, R. R. Geim, A. K. Nature Nano 3, 676681 (2008).10.1038/nnano.2008.280Google Scholar
7 Tapaszto, L. Dobrik, G. Lambin, P. Biro, L. P. Nature Nano 3, 397401 (2008).Google Scholar
8 Nakada, K. Fujita, M. Dresselhaus, G. Dresselhaus, M. S. Phys Rev B54, 1795417961 (1996).10.1103/PhysRevB.54.17954Google Scholar
9 Li, X. L. Wang, X. R. Zhang, L. Lee, S. W. Dai, H. J. Science 319, 12291232 (2008).10.1126/science.1150878Google Scholar
10 Han, M. Y. Ozyilmaz, B. Zhang, Y. B. Kim, P. Phys Rev Lett 98, 206805 (2007).Google Scholar
11 Jun, S. Phys Rev B78, 073405 (2008).Google Scholar
12 Gan, C. K. Srolovitz, D. Phys Rev B in press, (2010).Google Scholar
13 Shenoy, V. B. Reddy, C. D. Ramasubramaniam, A. Zhang, Y. W. Phys Rev Lett 101, 245501 (2008).Google Scholar
14 Rammerstorfer, F. Fischer, F. Friedl, N. J App Mech 68, 399404 (2001).Google Scholar
15 Brenner, D. W. Shenderova, O. A. Harrison, J. A. Stuart, S. J. Ni, B. Sinnott, S. B. J Phys-Condens Mat 14, 783802 (2002).Google Scholar
16 Zhang, D. Q. Alkhateeb, A. Han, H. M. Mahmood, H. McIlroy, D. N. Norton, M. G. Nano Letters 3, 983987 (2003).10.1021/nl034288cGoogle Scholar
17 Zhang, L. Deckhardt, E. Weber, A. Schonenberger, C. Grutzmacher, D. Nanotechnology 16, 655663 (2005).10.1088/0957-4484/16/6/006Google Scholar
18 Wahl, A. M. J App Mech 2, A38 (1935).Google Scholar
19 Ancker, C. J. J. Goodier, J. J App Mech 25, ASME (1958).Google Scholar
20 Jiang, J. W. Wang, J. S. Li, B. W. Phys Rev B80, 205429 (2009).Google Scholar