Published online by Cambridge University Press: 25 February 2011
We present the use of an STM to make quantitative observations of time-dependent mass flow associated with the decay of two-dimensional clusters on the Au(111) surface. When formed and observed in air, layered islands with well-defined edges located on larger terraces are generally found to decay in such a way that their areas decrease linearly in time over periods ranging from minutes to several hours depending on the island size. This is in contrast to the behavior of similar features formed and observed under ultra high vacuum conditions, which do not appear to decay over experimental periods of several days. The linear decay is consistent with models that have been used previously to describe growth of 2-dimensional clusters on surfaces. We discuss possible decay mechanisms, and the role that adsorbates may play in influencing the decay.