Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:29:31.795Z Has data issue: false hasContentIssue false

A Magnetically Ordered Non-Stoichiometric Zinc Ferrite for the Oxidative Dehydrogenation Reactions.

Published online by Cambridge University Press:  21 March 2011

J. A. Toledo
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas # 152, 07730, México, D.F., México.
N. Nava
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas # 152, 07730, México, D.F., México.
X. C. Sun
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas # 152, 07730, México, D.F., México.
X. Bokhimi
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas # 152, 07730, México, D.F., México.
Get access

Abstract

ZnFe2O4 nanoparticles were prepared by hydrothermal reduction approach. A considerable amount of α-Fe2O3 was segregated in the as-synthesized sample, which diffused into the tetrahedral and octahedral sites of the ZnFe2O4 spinel structure with increasing the annealing temperature. The introduction of Fe3+ into the tetrahedral positions was observed by Mössbauer spectra. Magnetization measurements showed an unusual ferrimagnetic behavior of the ZnFe2O4 phase, even at room temperature, confirming the introduction of Fe3+ into the tetrahedral sites of the spinel structure. Catalytic activity measured in the oxidative dehydrogenation of 1-butene reaction increased with increasing annealing temperature, indicating that those interactions of Fe3+ in tetrahedral and octahedral positions also promotes the activity and selectivity to butadiene formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldman, . Modern Ferrite Technology. Ed. by Nostrand Reinhold, Van, 1990, p.27 Google Scholar
2. Schiessl, W., Potzel, W., Karzel, H., Steiner, M., Kalvius, G. M., Matin, A., Krause, M. K., Halevy, I., Gal, J., Schäfer, W., Will, G., Hillberg, M. and Wäppling, R., Phys. Rev. B 53, 9143 (1996).Google Scholar
3. Pong, W. F., Chang, Y. K., Su, M. H., Tseng, P. K., Lin, H. J., Ho, G. H., Tsang, K. L., and Chen, C. T., Phys. Rev. B55, 11409 (1997).Google Scholar
4. Sun, S. and Murray, B. C., J. Appl. Phys. 85, 4325 (1999)Google Scholar
5. Hochepied, J. F. and Pileni, M. P., J. Appl. Phys. 87, 2477 (2000)Google Scholar
6. Sisk, M., Kilbride, I. and Barker, A. J., J. Mater. Sci. Lett. 14, 811 (1995)Google Scholar
7. Kung, H. H., Kung, M. C., and Yang, B. L., J. Catal. 69, 506 (1981)Google Scholar
8. Dumesic, J. A. and Topsoe, H., Adv. Catal. 26, 121 (1997).Google Scholar