Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:06:40.923Z Has data issue: false hasContentIssue false

The Magnetic Structure of Cu0.2Ni0.8 Alloys

Published online by Cambridge University Press:  10 February 2011

Yang Wang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. M. Stocks
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. M. C. Nicholson
Affiliation:
Computational Physics and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
W. A. Shelton
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Z. Szotek
Affiliation:
SERC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, U.K.
W. M. Temmerman
Affiliation:
SERC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, U.K.
Get access

Abstract

The locally self-consistent multiple scattering method is applied to ab initio spin-polarized local density approximation calculations for ferromagnetic CuNi alloys. The samples used to model the alloys are constructed with experimentally measured short range order parameters. These large cell calculations are performed using the Intel Paragon XP/S massively parallel processing supercomputer. The neutron magnetic diffuse scattering cross sections are calculated and compared with experiment. The dependence of magnetic moment formation on the local environment is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ahern, S. A. and Sucksmith, W., Proc. Phys. Soc. B 69, 1050 (1956).Google Scholar
[2] Ahern, S. A., Martin, M. J. C., and Sucksmith, W., Proc. Roy. Soc. (London) A 248, 145 (1958).Google Scholar
[3] Aldred, A. T., Rainford, B. D., Hicks, T. J., and Kouvel, J. S., Phys. Rev. B 7, 218 (1973).Google Scholar
[4] Wang, Yang, Stocks, G. M., Nicholson, D. M. C., Shelton, W. A., Proceedings of the TMS symposium 1993, Alloy Modeling and Design edited by Stocks, G. M. and Turchi, P. E. A., pp. 137 (The Minerals, Metals and Materials Society, Warrendale, 1994).Google Scholar
[5] Jaccarino, V. and Walker, L. R., Phys. Rev. Lett. 15, 258 (1965).Google Scholar
[6] Medina, R. A. and Cable, J. W., Phys. Rev. B 15, 1539 (1977).Google Scholar
[7] Yang Wang, Stocks, G. M., Nicholson, D. M. C., Shelton, W. A., Szotek, Z., and Temmerman, W. M., Phys. Rev. Lett. 75, 2867 (1995).Google Scholar
[8] Hohenberg, P. and Kohn, W., Phys. Rev. B 136, 864 (1964).Google Scholar
[9] Kohn, W. and Sham, L. J., Phys. Rev. A 140, 1133 (1965).Google Scholar
[10] Nicholson, D. M. C., Stocks, G. M., Wang, Y., and Shelton, W. A., Szotek, Z., and Temmerman, W. M., Phys. Rev. B 50, 14686 (1994).Google Scholar
[11] Rayleigh, Lord, Philos. Mag. 34, 481 (1892).Google Scholar
[12] Korringa, J., Physica 13, 392 (1947).Google Scholar
[13] Faulkner, J. S. and Stocks, G. M., Phys. Rev. B 21, 3222 (1980).Google Scholar
[14] Stoner, E. C., Proc. Roy. Soc. A 154, 656 (1936).Google Scholar
[15] Stoner, E. C., Proc. Roy. Soc. A 165, 372 (1938).Google Scholar
[16] Marshall, W., J. Phys. C 1, 88 (1968).Google Scholar
[17] Cable, J. W., Wollan, E. O., and Child, H. R., Phys. Rev. Letts. 22, 1256(1969).Google Scholar
[18] von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972).Google Scholar
[19] 0. Gunnarsson and Lundqvist, B. I., Phys. Rev. B 13, 4274 (1976).Google Scholar
[20] Gunnarsson, O., J. Phy. F 6, 587 (1976).Google Scholar
[21] Andersen, O. K., Madsen, J., Poulsen, U. K., Jepsen, O. and Kollar, J., Physica B 86–88, 249 (1977).Google Scholar