Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T13:03:26.877Z Has data issue: false hasContentIssue false

Magnetic Second Harmonic Generation Studies of Co-Cu Granular Films

Published online by Cambridge University Press:  10 February 2011

T.V. Misuryaev
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
T.V. Murzina
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
E.A. Ganshina
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
V.S. Gushin
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
D.V. Kazantsev
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
O.A. Aktsipetrov
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
Get access

Abstract

Magneto-induced optical second harmonic generation (MSHG) is used to study the structural and magnetic properties of Co-Cu granular films. Azimuthal anisotropy of the SHG response reveals an existence of the regular structure of Co nanocrystals. The nonlinear magneto-optical Kerr effect (NOMOKE) is observed for the longitudinal and transverse configurations. The coherence of the SH responses from the nonmagnetic and magnetic subsystems of the Co-Cu granular films is demonstrated by the MSHG phase measurements (the MSHG interferometry).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64, p. 2304 (1990).Google Scholar
2. Baibich, M., Broto, J., and Fert, A., Phys. Rev. Lett. 61, p. 2472 (1988).Google Scholar
3. Rasing, Th., J. Magn. Magn. Mater. 165, p. 35 (1997).Google Scholar
4. Heinz, T.F., in Nonlinear Surface Electromagnetic Phenomena, Ponath, H.-E. and Stegeman, G.I., eds. (North Holland, 1991), 355.Google Scholar
5. Aktsipetrov, O.A., Elyutin, P.V., Fedyanin, A.A., Nikulin, A.A., and Rubtsov, A.N., Surf Sci. 325, p. 343 (1995).Google Scholar
6. Aktsipetrov, O.A., Fedyanin, A.A., Melnikov, A.V., Mishina, E.D., and Murzina, T.V., Jpn. J. Appl. Phys. 36, p. 48 (1998).Google Scholar
7. Pavlov, V.V., Pisarev, R.V., Kirilyuk, A., and Rasing, Th., Phys. Rev. Lett. 78, p. 2004 (1997).Google Scholar
8. Xiao, J.Q., Jiang, J.S., and Chien, C.L., Phys. Rev. Lett. 68, p. 3749 (1992).Google Scholar
9. Stolle, R., Veenstra, K.J., Manders, F., Rasing, Th., van den Berg, H., and Persat, N., Phys. Rev. B 55, p. R4925 (1997).Google Scholar
10. Stolle, R., Marowsky, G., and Berkovic, G., Appl. Phys. B 63, p. 491 (1996).Google Scholar
11. Aktsipetrov, O.A., Elyutin, P.V., Nikulin, A.A., and Ostrovskaya, E.A., Phys. Rev. B 51, p. 17591 (1995).Google Scholar
12. Mitani, S., Fujimori, H., and Ohnuma, S., J. Magn. Magn. Mater. 165, p. 141 (1997).Google Scholar