Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:26:41.956Z Has data issue: false hasContentIssue false

Magnetic Properties of ZnO:Ni Aerogel Nanopowders: Effect of Thermal Treatments

Published online by Cambridge University Press:  01 February 2011

Lassaad El Mir
Affiliation:
[email protected], Faculté des Sciences de Gabès, Physique des matériaux et des Nanomatériaux Appliquée à l'Environnement, Gabès 6072, Tunisia
H.Jurgen von Bardeleben
Affiliation:
[email protected], Université Paris 6 - UMR 7588 au CNRS, INSP, 140, rue de Lourmel, Paris, 75015, France
M Saadoun
Affiliation:
[email protected], Faculté des Sciences de Gabès, Physique des matériaux et des Nanomatériaux Appliquée à l'Environnement, Gabès, 6072, Tunisia
Aroussi Ben Mahmoud
Affiliation:
[email protected], Faculté des Sciences de Gabès, Physique des matériaux et des Nanomatériaux Appliquée à l'Environnement, Gabès, 6072, Tunisia
Jean-Louis Cantin
Affiliation:
[email protected], Université Paris 6 - UMR 7588 au CNRS, INSP, 140, rue de Lourmel, Paris, 75015, France
Get access

Abstract

We report the elaboration of Ni doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach the water for hydrolyse was slowly released by esterification of the metal acetate with methanol followed by a supercritical drying in ethyl alcohol. Doping concentrations between 5 and 25 at% have been investigated. In the as-prepared state the powders with an average particle size of 30nm present ferromagnetic properties; thermal annealing in the 500°C to 700°C temperature range in air or oxygen modifies the magnetic properties. We ascribe the observed ferromagnetism to the presence and transformation of Ni based secondary phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Katayama-Yoshida, H., Jpn. J. Appl. Phys. 39, 555(2000) and ibid 40, L334 (2001)Google Scholar
2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 1015 (2000)Google Scholar
3. Janisch, R., Gopal, P., Spaldin, N. A., J. Phys: Condens. Matter 17, R657(2005)Google Scholar
4. Seshadri, R., Current Opinion in Solid State & Materials Science 9, 1 (2005)Google Scholar
5. Liu, C., Yun, F., Morkoc, H., J. of Mat. Science:Materials in Electronics 16, 555 (2005)Google Scholar
6. Radovanovic, P., Gamelin, D. R., Phys. Rev. Lett. 91, 157201 (2003)Google Scholar
7. Schwartz, D. A. et al, Appl. Phys. Lett. 85, 1395 (2004)Google Scholar
8. Li, B. B. et al Materials Science in Semiconductor Processing 9, 141 (2006)Google Scholar
9. Pei, G. et al, J. Magn. Magn. Mat. 302, 340 (2006)Google Scholar
10. Cong, C. J. et al Solid State Commun. 138, 511 (2006)Google Scholar
11. Thota, S. et al, J. Phys.: Condens. Matter 18, 2473 (2006)Google Scholar
12. Sharma, V. et al, J. Chem. Phys. 35, 5596 (1987)Google Scholar