Published online by Cambridge University Press: 15 March 2011
Magnetic and electric manipulation of a single cell in a microfluidic channel was demonstrated using a microelectromagnet matrix and a micropost matrix. The microelectromagnet matrix is two perpendicular arrays of straight wires that are separated and topped by insulating layers. The micropost matrix is an array of post-shaped electrodes embedded in an insulting layer. By controlling the current in each wire of the microelectromagnet matrix or the voltage on each electrode of the micropost matrix, versatile magnetic or electric fields were created on micrometer length scales, controlling the motion of individual cells in fluid. Single or multiple yeast cells attached to magnetic beads were trapped and moved by the microelectromagnet matrix; a single yeast cell was directly trapped and moved by the micropost matrix.