Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:01:53.432Z Has data issue: false hasContentIssue false

Luminescence from Erbium-Doped Gallium Nitride Thin Films

Published online by Cambridge University Press:  10 February 2011

J. M. Zavadat
Affiliation:
U.S. Army European Research Office, London, UK, NWI 5TH
Myo Thaik
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668
U. Hòmmerich
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668
J. D. MacKenzie
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
F. Ren
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
H. Shen
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD, 20783
J. Pamulapati
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD, 20783
H. Jiang
Affiliation:
Kansas State University, Department of Physics, Manhattan, KN
J. Lin
Affiliation:
Kansas State University, Department of Physics, Manhattan, KN
R.G. Wilsont
Affiliation:
Consultant, Stevens Ranch, CA 91381 E-mail:, [email protected]
Get access

Abstract

The III-V nitride semiconductors appear to be excellent host materials for optical device applications involving thin films doped with rare earth atoms. In particular, GaN epilayers doped with Er ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable thermal stability of the light emission may be due to the large energy bandgap of the material, as well as to the optical inactivity of material defects in the GaN film. In this paper we present recent developments concerning the luminescence characteristics of Er-doped GaN thins films. We have used two methods for doping GaN films with Er ions, ion implantation and in-situ incorporation during gas source metal-organic molecular beam epitaxy (MOMBE). Bandedge (at ∼ 0.34 μm) and infrared (at ∼ 1.54 μm) photoluminescence (PL) spectra have been measured for both types of Er-doped GaN films. Considerably different emission spectra have been observed depending upon the incorporation method and the heat treatment procedure. In situ Er-doped GaN layers have been processed into hybrid light emitting devices and emission spectra at 1.54 Pm have been measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koechner, W., Solid State Laser Engineering, Springer Verlag, 3rd Ed. (1992).Google Scholar
2. Desurvire, E., Simpson, J. R., and Becker, P. C., Opt. Lett., 12, 888 (1987).Google Scholar
3. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43 943 (1983).Google Scholar
4. Rare Earth Doped Semiconductors I, Materials Research Society Proceedings, Vol. 301 (Pomrenke, G. S., Klein, P. B. and Langer, D. W., eds.) (1993).Google Scholar
5. Zavada, J. M. and Zhang, D., Solid-St. Electron. 38 1285 (1995).Google Scholar
6. Rare Earth Doped Semiconductors I, Materials Research Society Proceedings, Vol. 422 (Coffa, S., Polman, A., and Schwartz, R. N., eds.) (1996).Google Scholar
7. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and Guillou, Y. L., Electron. Lett., 25, 718 (1989).Google Scholar
8. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65 992 (1994).Google Scholar
9. Torvik, J. T., Feuerstein, R. J., Pankove, J. I., Qiu, C. H., and Namavar, F., Appl. Phys. 69 2098 (1996).Google Scholar
10. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71 231 (1997).Google Scholar
11. Hansen, D. M., Zhang, R., Perkins, N.R., Safvi, S., Zhang, L., Bray, K. L., and Keuch, T. F., Appl. Phys. Lett. 72 1244 (1997).Google Scholar
12. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hòmmerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 69 2083 (1996).Google Scholar
13. Steckl, A. J. and Birkhahn, R., Appl. Phys. Lett. 73 1701 (1998).Google Scholar
14. Torvik, J. T., Feuerstein, R. J., Qiu, C. H., Leksano, M. W., Namavar, F., and Pankove, J. I., Mat. Res. Soc. Symp. Proc. 422 199 (1996).Google Scholar
15. Thaik, Myo, Hòmmerich, U., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 971 2641 (1997).Google Scholar
16. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., Bishop, S. G., and Klein, P. B., Appl. Phys. Lett. 71 2662 (1997).Google Scholar
17. Choyke, W. J., Devaty, R. P., Clemen, L. I., Yoganathan, M., Pensl, G., and Hassler, Ch., Appl. Phys. 65 1668 (1994).Google Scholar
18. Qiu, C. H., Leksono, M. W., Pankove, J. I., Torvik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. 66 562 (1995).Google Scholar
19. Zolper, J. C., Crawford, M. H., Williams, J. S., Tan, H. H. and Stall, R. A., Nucl. Instrum. and Methods B 127/128 467 (1997).Google Scholar