Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T10:52:06.316Z Has data issue: false hasContentIssue false

Luminescence enhancement of colloidal quantum dots by strain compensation

Published online by Cambridge University Press:  03 May 2013

Y. Lu
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, U.S.A
Y.Q. Zhang
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, U.S.A
X. A. Cao
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, U.S.A
Get access

Abstract

We have investigated the effects of two different strain-relief bilayer shell structures on the luminescent properties of colloidal CdSe quantum dots (QDs). CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and their crystallinity of was examined by X-ray diffraction. The QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell. The resulting CdSe/ZnS/ZnCdS QDs exhibited 40% stronger photoluminescence and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD light-emitting diodes (LEDs) had a luminance of 558 cd/m2 at 20 mA/cm2, 28% higher than that of CdSe/ZnCdS/ZnS QD-LEDs. The former also had better spectral purity. These results suggest that nanocrystal shells may be strain-engineered in a different way to achieve QDs of high crystalline and optical quality well suited for full-color display applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Talapin, D. V., Lee, J. S., Kovalenko, M. V., Shevchenko, E. V., Chem. Rev. 110 (1), 389458 (2010).CrossRefGoogle Scholar
Rogach, A. L., Gaponik, N., Lupton, J. M., Bertoni, C., Gallardo, D. E., Dunn, S., Pira, N. L., Paderi, M., Repetto, P., Romanov, S. G., O’Dwyer, C., Torres, M. S., and Eychmuller, A., Angew. Chem., Int. Ed. 47 (35), 65386549 (2008).CrossRefGoogle Scholar
Reiss, P., Protie`re, M., and Li, L., Small 5 (2), 154168 (2009).CrossRefGoogle Scholar
Mews, A., Z. Phys. Chem. 221, 295306 (2007).CrossRefGoogle Scholar
Zhang, Y. Q., Cao, X. A., Appl. Phys. Lett. 97, 253115 (2010).CrossRefGoogle Scholar
Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M., J. Phys. Chem. B 101 (46), 94639475 (1997).CrossRefGoogle Scholar
Reiss, P., Carayon, S., Bleuse, J., Pron, A., Synthetic Metals 139 (3), 649652 (2003).CrossRefGoogle Scholar
Talapin, D. V., Mekis, I., Goltzinger, S., Kornowski, A., Benson, O., Weller, H., J. Phys. Chem. B 108 (49), 1882618831 (2004).CrossRefGoogle Scholar
McBride, J., Treadway, J., Feldman, L. C., Pennycook, S. J., Rosenthal, S. J., Nano Lett. 6 (7), 14961501 (2006).CrossRefGoogle Scholar
Xie, R., Kolb, U., Li, J., Basche, T., Mews, A., J. Am. Chem. Soc. 127 (20), 74807488 (2005).CrossRefGoogle Scholar
Li, J. J., Wang, Y. A., Guo, W. Z., Keay, J. C., Mishima, T. D., Johnson, M. B., and Peng, X. G., J. Am. Chem. Soc. 125 (41), 1256712575 (2003).CrossRefGoogle Scholar