Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T18:47:21.307Z Has data issue: false hasContentIssue false

Low-temperature Plasma Processing of Micro- and Nanostructured Materials for Biomedical Applications

Published online by Cambridge University Press:  16 May 2012

Masaaki Nagatsu
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Roman V. Bekarevich
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Alexei Balmakov
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Iuliana Motrescu
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Akihisa Ogino
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Akiko Murakawa
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Enoch Y. Park
Affiliation:
Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Get access

Abstract

We develop a plasma processing technique for modifying the surface properties of micro- and nanostructured materials for biomedical applications. We also investigate the physical and chemical roles of the plasma in modifying the surfaces of micro- and nanostructured materials such as magnetic nanoparticles (MNPs), carbon nanotubes (CNTs), nanophosphors, and biomolecules for various biomedical applications. We introduced amino groups onto the surfaces of graphite-encapsulated iron compound nanoparticles using a low-pressure Ar plasma pre-treatment and ammonia plasma post-treatment followed by immobilization of biomolecules, such as dextran and N-acetyllactosamine (LacNAc). The present technique was also used to introduce amino groups onto CNT dot arrays grown on Si substrates for use in biochip sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pastorin, G., Pharmaceut. Res. 26, 746 (2009).10.1007/s11095-008-9811-0Google Scholar
2. Pankhurst, Q. A., Thanh, N. K. T., Jones, S. K., Dobson, J., J. Phys. D: Appl. Phys. 42, 224001 (2009).10.1088/0022-3727/42/22/224001Google Scholar
3. Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., J. Phys. D: Appl. Phys. 36, R167 (2003).10.1088/0022-3727/36/13/201Google Scholar
4. Lu, A-H., Salabas, E. L., Schuth, F., Angew. Chem. Int. Ed. 46, 1222 (2007).10.1002/anie.200602866Google Scholar
5. Kim, S., Shibata, E., Sergiienko, R., Nakamura, T., Carbon 46, 1523 (2008).10.1016/j.carbon.2008.05.027Google Scholar
6. Ito, A., Shinkai, M., Honda, H., Kobayashi, T., J. Biosci. Bioeng. 100, 1 (2005).10.1263/jbb.100.1Google Scholar
7. Berry, C. C., Curtis, A. S. G., J. Phys. D: Appl. Phys. 36, R198 (2003).10.1088/0022-3727/36/13/203Google Scholar
8. Berry, C. C., J. Phys. D: Appl. Phys. 42, 224003 (2009).10.1088/0022-3727/42/22/224003Google Scholar
9. Bystrzejewski, M., Huczko, A., Lange, H., Sensor Actuat. B Chem. 109, 81 (2005).10.1016/j.snb.2005.03.029Google Scholar
10. Cao, H., Li, R., Gui, Q., Wang, X., Bin, X., J. Wuhan Univ. Technol. Mater. Sci. Ed. 22, 214 (2007).Google Scholar
11. Park, J. B., Jeong, S. H., Jeong, M. S., Kim, J. Y., Cho, B. K., Carbon, 46, 1369 (2008).10.1016/j.carbon.2008.05.011Google Scholar
12. Chen, C. L., Ogino, A., Wang, X. K., Nagatsu, M., Appl. Phys. Lett. 96, 131504 (2010).10.1063/1.3377007Google Scholar
13. Jiang, H., Chen, F., Lagally, M. G., Denes, F. S., Langmuir, 26, 1991 (2009).10.1021/la9022163Google Scholar
14. Nagatsu, M., Yoshida, T., Mesko, M., Ogino, A., Matsuda, T., Tanaka, T., et al. ., Carbon, 44, 3336 (2006).Google Scholar
15. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., et al. ., Chem. Phys. Lett. 212, 379 (1993).10.1016/0009-2614(93)89341-EGoogle Scholar
16. Saraswati, T. E., Matsuda, T., Ogino, A., Nagatsu, M., Diam. Relat. Mater. 20, 359 (2011).10.1016/j.diamond.2011.01.027Google Scholar
17. Saraswati, T. E., Ogino, A., Nagatsu, M., Carbon. 50, 1253 (2012).Google Scholar
18. Sherwood, P. M. A., J. Chem. Soc., Faraday Trans. 2: Molecular and Chemical Physics 72, 1805 (1976).10.1039/f29767201805Google Scholar
19. Van Stipdonk, M. J., Santiago, V., Schweikert, E. A., Chusuei, C. C., Goodman, D. W., Int. J. of Mass Spect. 197, 149 (2000).10.1016/S1387-3806(99)00255-9Google Scholar
20. Chen, C., Liang, B., Lu, D., Ogino, A., Wang, X., Nagatsu, M., Carbon, 48, 939 (2010).10.1016/j.carbon.2009.10.033Google Scholar
21. Denis, L., Cossement, D., Godfroid, T., Renaux, F., Bittencourt, C., Snyders, R., et al. ., Plasma Process. Polym. 7, 876 (2010).Google Scholar
22. Losito, I., De Giglio, E., Cioffi, N., Malitesta, C., J. Mater. Chem. 11, 1812 (2001).10.1039/b101626lGoogle Scholar
23. Denis, L., Cossement, D., Godfroid, T., Renaux, F., Bittencourt, C., Snyders, R., et al. ., Plasma Process. Polym. 6, 199 (2009).10.1002/ppap.200800137Google Scholar