Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:36:59.211Z Has data issue: false hasContentIssue false

Low Temperature Pl Characterization of Lpee Grown GaSb and GaInAsSb Epilayers

Published online by Cambridge University Press:  15 February 2011

S. Iyer
Affiliation:
Department of Electrical Engineering, North Carolina A&T State University, Greensboro, NC 27411.
S. Hegde
Affiliation:
University of Dayton Research Institute, Dayton, OH 45649–0178.
K.K. Bajaj
Affiliation:
Department of Physics,Emory University, Atlanta, GA 30322
Ali Abul-Fadl
Affiliation:
Department of Electrical Engineering, North Carolina A&T State University, Greensboro, NC 27411.
W. Mitchel
Affiliation:
Materials Directorate,Wright Laboratory, Wright Patterson Air Force Base, OH 45433–6533.
Get access

Abstract

We have investigated the low temperature (4.5 K) photoluminescence (PL) spectra of GaSb and GaInAsSb layers. The layers were grown by liquid phase electro-epitaxial (LPEE) technique. Several bound excitomc transitions were observed both in GaSb and GaInAsSb layers. Shift in the PL peak energy corresponding to the band to band transition with temperature was determined. The linear part of the shift above 100K, exhibited a slope of -0.3 meV/K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meulen, Y. J. Van Der, J. Phys. Chem. Solids 28, 25 (1967).Google Scholar
2. Anayama, C., Tanahashi, T., Kuwatsuka, H., Nishiyama, S., Isozumi, S., and Nakajima, K., Appl. Phys. Lett. 56, 239 (1990).Google Scholar
3. Chidley, E. T. R., Haywood, S. K., Henriques, A. B., Mason, N. J., Nicholas, R. J. and Walker, P. J., Semicond. Sci. Technol. 6, 45 (1991).CrossRefGoogle Scholar
4. Lee, M., Nicholas, D. J., Singer, K. E. and Hamilton, B., J. Appl. Phys. 59, 2895 (1986).CrossRefGoogle Scholar
5. Ruhle, W., Jakowetz, W., Wolk, C., Linnebach, R. and Pilkuhn, M., Phys. Stat. Sol.(B) 73, 255 (1976).Google Scholar
6. Benoit a la Guillaume, C. and Lavallard, P., Phys. Rev. B 5, 4900 (1972).Google Scholar
7. Johnson, E. J. and Fan, H. Y., Phys. Rev. 139, A1991 (1965).Google Scholar
8. Takenaka, C.,Kusunoki, T. and Nakajima, K., J.Cryst.Growth 114 293(1991)CrossRefGoogle Scholar
9. Okamoto, A., Lagowski, J. and Gatos, H. C., J. Appl. Phys. 53, 1706 (1982).Google Scholar
10. Daniele, J. J. and Lewis, A., J. Electron. Mater. 12, 1015 (1983).Google Scholar
11. Iyer, Shanthi N., Ali, Abul-Fadl, Macrander, Albert T., Lewis, Jonathan H., Collis, Ward J. and Sulhoff, James W., Mat. Res. Symp. Proc. 160, 445 (1990).Google Scholar
12. Iyer, S., Hegde, S., Abul-Fadl, Ali, Bajaj, K. K. and Mitchel, W., Phys. Rev. B. 47, 1329 (1993).Google Scholar
13. Iyer, S., Hegde, S., Bajaj, K. K., Abul-Fadl, A. and Mitchel, W., J. Appl. Phys. 73, 3948 (1993).Google Scholar
14. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar