Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T07:58:45.715Z Has data issue: false hasContentIssue false

Low Temperature Growth Of Barium Strontium Titanate Films By Ultraviolet-Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

V. Craciun
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. M. Howard
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
E. S. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Barium strontium titanate (BST) thin films were grown directly on Si substrates by an in situ ultraviolet (UV)-assisted pulsed laser deposition (UVPLD) technique. With respect to films grown by conventional (i.e. without UV illumination) pulsed laser deposition (PLD), the UVPLD grown films exhibited improved structural and electrical properties. The dielectric constant of a 40-nm thick film deposited at 650 °C was determined to be 281, the leakage current density was approximately 4×10−8 A/cm2at 100 kV/cm, and the density of interface states at the flat-band voltage was found to be approximately 5.6×1011 eV−1 cm−2 X-ray photoelectron spectroscopy investigations found that the surface of the grown films exhibited an additional Ba-containing phase, besides the usual BST perovskite phase, which was likely caused by stress and/or oxygen vacancies. The amount of this new phase was always smaller and very superficial for UVPLD grown films, which can explain their better overall properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Komiya, H., IEEE Symposium on VLSI Technology, 1 (1997).Google Scholar
2 Arlt, G., Hennings, D., and With, G. de, J. Appl. Phys. 58, 1619 (1985).Google Scholar
3 Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B., and, and Baniecki, J. D., Appl. Phys. Lett. 75, 2129 (1999).Google Scholar
4 Kinder, L., Zhang, X. F., Grigorov, I. L., Kwon, C., Jia, Q. X., Luo, L., and Zho, J., J. Vac. Sci. Technol. A 17, 2148 (1999).Google Scholar
5 Feldman, L. C., Gusev, E. P., and Garfunkel, E. in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by Garfunkel, E. et al. (Kluwer, Dordrecht, 1998).Google Scholar
6 Meindl, J. D., J. Vac. Sci. Technol. 14, 192 (1996).Google Scholar
7 National Technology Roadmap for Semiconductors (Sematech Corp., San Jose, CA, 1997).Google Scholar
8 Chang, W., Horwitz, J. S., Carter, A. C., Pond, J. M., Kirchoefer, S. W., Gilmore, C. M., and Chrisey, D. B., Appl. Phys. Lett. 74, 1033 (1999).Google Scholar
9 Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B., and Baniecki, J. D., Appl. Phys. Lett. 75, 2129 (1999).Google Scholar
10 Gao, Y., Mueller, A. H., Irene, E. A., Auciello, O., Krauss, A., and Schultz, J. A., J. Vac. Sci. Technol. A 17, 1880 (1999).Google Scholar
11 Cheng, H.-F., J. Appl. Phys. 79, 7965 (1996).Google Scholar
12 Fujisaki, Y., Shimamoto, Yasuhiro, and Matsui, Yuichi, Jpn. J. Appl. Phys. 38 pt. 2, L52 (1999).Google Scholar
13 Tcheliebou, F. and Baik, S., J. Appl. Phys. 80, 7046 (1996).Google Scholar
14 Thielsch, R., Kaemmer, K., Holzapfel, B., and Schultz, L., Thin Solid Films 301, 203 (1997).Google Scholar
15 Cheng, H.-F., J. Appl. Phys. 79, 7965 (1996).Google Scholar
16 Saha, S. and Krupanidhi, S. B., Mat. Sci. Eng. B 57, 135 (1999).Google Scholar
17 Knauss, L. A., Pond, J. M., Horwitz, J. S., Chrisey, D. B., Mueller, C. H., and Treece, R., Appl. Phys. Lett. 69, 25 (1996).Google Scholar
18 Srivastava, A., Craciun, V., Howard, J., and Singh, R. K., Appl. Phys. Lett. 75, 3002 (1999).Google Scholar
19 Srivastava, A., Kumar, D., and Singh, R. K., Electrochem. Solid State Lett. 2, 294 (1999).Google Scholar
20 Craciun, V., Howard, J., and Singh, R. K., presented at MRS Spring Meeting, San Francisco, 6-10 April 1999.Google Scholar
21 Craciun, V. and Singh, R. K., Electrochem. Solid-State. Lett. 2,446 (1999).Google Scholar
22 Miot, C., Husson, E., Proust, C., Erre, R., and Coutures, J. P., J. Mater. Res. 12, 2388 (1997).Google Scholar
23 Lopez, M. C. B., Fourlaris, G., Rand, B., and Riley, F. L., J. Am. Ceram. Soc. 82, 1777 (1999).Google Scholar
24 Mukhopadhyay, S. M. and Chen, T. C. S., J. Mater. Res. 10, 1502 (1995).Google Scholar
25 Leinen, D., Fernandez, A., Espinos, J. P., Gonzalez-Elipe, A. R., Appl. Phys. A 63, 237 (1996).Google Scholar
26 McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
27 Alexe, M., Appl. Phys. Lett. 72, 2283 (1998).Google Scholar
28 Lee, J. M., Kang, S. Y., Shin, J. C., Kim, W. J., Hwang, C. S., and Kim, H. J., Appl. Phys. Lett. 74, 3489 (1999).Google Scholar
29 Hwang, C. S., Lee, B. T., Kang, C. S., Kim, J. W., Lee, k. H., Cho, H. J., Horii, H., Kim, W. D., Lee, S. I., Rob, Y. B., and Lee, M. Y., J. Appl. Phys. 83, 3703 (1998).Google Scholar