Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:53:46.314Z Has data issue: false hasContentIssue false

Low Pressure Diamond Growth Using a Secondary Radical Source

Published online by Cambridge University Press:  22 February 2011

Terttu I. Hukka
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Robin E. Rawles
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Mark P. D'Evelyn
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Get access

Abstract

A novel method for chemical vapor deposition and atomic layer epitaxyusing radical precursors under medium vacuum conditions is being developed. Fluorine atoms are generated by thermal dissociation in a hot tube and abstract hydrogen atoms from precursor molecules injected immediately downstream of the source, generating radicals with completechemical specificity. The radical precursors are then transported to the growing substrate surface under nearly collision-free conditions. To date we have grown diamond films from CCl3 or CH3 radicals together with atomic hydrogen, generated by injecting CHCI3 or CH4 and H2 into the F atom stream at reactor pressures between 10−4 and 10−2 Torn This approach should be ideal for low-temperature growth and atomic layer epitaxy: growth rates remain relatively high because activation energies for radical reactions are typically small and because the cycle times for atomic layer epitaxy can be reduced to die msec range by fast gas-stream switching, and contamination and segregation are minimized by keeping the surface “capped” by chemisorbed intermediates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCESxs

1. Suntola, T., Mater. Sci. Reports 4, 265 (1989); Proceedings of the Second International Symposium on Atomic Layer Epitaxy, Thin Solid Films (in press).Google Scholar
2. (a) Yarbrough, W. A. and Messier, R., Science 247, 688 (1990);Google Scholar
(b) Celii, F. G. and Butler, J. E., Annu. Rev. Phys. Chem. 42, 643 (1991);Google Scholar
(c) Angus, J. C., Wang, Y., and Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).Google Scholar
3. (a) Martin, L. R. and Hill, M. W., J. Mater. Sci. Lett. 9, 621 (1990);Google Scholar
(b) Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990);Google Scholar
(c) Martin, L. R., J. Mater. Sci. Lett, (in press).Google Scholar
4. (a) Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., J. Mater. Res. 5, 2405 (1990);Google Scholar
(b) J. Appl. Phys. 70, 1695 (1991);Google Scholar
(c) D'Evelyn, M. P., Chu, C. J., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 1528 (1992).Google Scholar
5. Nishizawa, J., Aoki, K., Suzuki, S., Kikuchi, K., J. Electrochem Soc. 137, 1898 (1990).Google Scholar
6. Hukka, T. I., Rawles, R. E., and D'Evelyn, M. P., Thin Solid Films (in press).Google Scholar
7. Kerr, J. A., in Free Radicals, ed. Kochi, J. K. (Wiley, New York, 1973), p. 1.Google Scholar
8. Wilt, J. W., in Reactive Intermediates, Vol. 3, ed. Abramovitch, R. A. (Plenum, New York, 1983), p. 113.Google Scholar
9. Cheng, C. C., Lucas, S. R., Gutleben, H., Choyke, W. J., and Yates, J. T. Jr, J. Am. Chem. Soc. 114, 1249 (1992).Google Scholar
10. (a) Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990);Google Scholar
(b) Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991);Google Scholar
(c) Garrison, B. J., Dawnkaski, E. J., Srivastava, D., and Brenner, D. W., Science 255, 835 (1992);Google Scholar
(d) Zhu, M., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., Mater. Res. Soc. Symp. Proc. (in press).Google Scholar
11. Spencer, J. E., Dinan, J. H., Boyd, P. R., Wilson, H., and Buttrill, S. E. Jr, J. Vac. Sci. Technol. A 7, 676 (1989).Google Scholar
12. (a) Suzuki, J., Kawarada, H., Mar, K., Wei, J., Yokota, Y., and Hiraki, A., Jpn. J. Appl. Phys. 28, L281 (1989);Google Scholar
(b) Shing, Y. H., Pool, F. S., and Rich, D. H., Thin Solid Films 212, 150 (1992);Google Scholar
(c) Tsai, W., Reynolds, G. J., Hikido, S., and Cooper, C. B. III, Appl. Phys. Lett. 60, 1444 (1992);Google Scholar
(d) Jin, S. and Moustakas, T. D., Dia. Rel. Mater, (in press).Google Scholar