Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:23:41.576Z Has data issue: false hasContentIssue false

Low Loss Transmission Electron Spectroscopic Studies in Donor Doped BaTiO3

Published online by Cambridge University Press:  10 February 2011

Kalpana S. Katti
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, WA 98195, USA
Maoxu Qian
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, WA 98195, USA
Mehmet Sarikaya
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, WA 98195, USA
Get access

Abstract

We used the Kramers-Kronig transformation to investigate the local dielectric function of barium titanate, BaTiO3 from regions of sub-micrometer scale. Further the effect of dopants, in this case, Nb, on the dielectric function was investigated to assess the level of its local partitioning in the BaTiO3 lattice. The transmission electron energy loss spectroscopy technique was used to obtain dielectric function by placing a small electron probe in isolated regions of the electron transparent BaTiO3 samples. We observed an anomalous, but consistent, shift in the volume plasmon in all regions of the doped sample (compared to the pure one) indicating a uniform incorporation of the dopant within the lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heywang, W. and Thomann, H. in Electronic Ceramics, edited by Steele, B. C. H. (Elsevier Applied Science, London and New York, 1991).Google Scholar
2. Amin, A., J. Am. Ceram. Soc., 72 [3] 369 (1989).Google Scholar
3. Heywang, W., J. Mater. Sci., 6, 1214 (1971).Google Scholar
4. Heywang, W., J. Am. Ceram. Soc., 47 [10] 484 (1964).Google Scholar
5. Schwartz, R. N. and Wechsler, B. A., J. Am. Ceram. Soc., 73 [11] 3200 (1990).Google Scholar
6. Schwartz, R. N., Wechsler, B. A. and West, L., Appl. Phys. Lett., 67 1352 (1995).Google Scholar
7. Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K., in Springer Tracts in Modern Physics, 54 (Springer-Verlag, Berlin, 1970) pp. 77135.Google Scholar
8. Wang, Y.Y., Zhang, H., Dravid, V. P., Han, P. D., and Payne, D. A., Phys Rev B, 48 9810 [13] (1993).Google Scholar
9. Dravid, V. P., Zhang, H., Wills, L. A., and Wessels, B. W., J. Mater. Res., 9 [2] 426 (1994).Google Scholar
10. Hunt, J. A., and Williams, D. B., Ultramicroscopy, 38, 47 (1991).Google Scholar
11. Browning, N. D., Yuan, J., and Brown, L. M., Ultramicroscopy, 38, 291 (1991).Google Scholar
12. Wang, Y.Y., Ph.D. Dissertation, Virginia Polytechnic Institute and State University, (1990).Google Scholar
13. Hudson, L. T., Kurtz, R. L., Robey, S. W., Temple, D., and Stockbauer, R. L., Phys. Rev. B., 47 [3] 1174 (1993).Google Scholar
15. Holma, M., Kitamura, M., and Chen, H., J. Appl. Phys. 76 [1] 451 (1994).Google Scholar
16. Qian, M., Sarikaya, M. and Stern, E.A., Ultramicroscopy, 59, 137 (1995).Google Scholar
17. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986).Google Scholar
18. CRC Handbook of Chemistry and Physics (1994).Google Scholar