Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:38:01.380Z Has data issue: false hasContentIssue false

Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application

Published online by Cambridge University Press:  01 February 2011

Joong Hyun Park
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Chang Yeon Kim
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Kwang Sub Shin
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Sang Geun Park
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Min Koo Han
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Get access

Abstract

We have proposed low hydrogen concentration (CH) silicon nitride (SiNX) as a dielectric for flexible display application. The fabrication temperature on plastic substrate is limited below Tg (glass transition temperature, typically 130˜180 °C) and it was reported that CH in thin film is strongly depends on fabrication temperature. As the fabrication temperature is decreasing, hydrogen concentration is increasing. SiNX deposited in ultra low temperature (< 150 °C) has high CH which is porous, low density. Our experimental results using SiH4, He, N2 gas mixture shows that in the SiNX CH is less than 15 at.%. Breakdown voltage of proposed SiNX dielectric is 5 MV/cm. In the wet etch rate test using a nitride etching solution, He dilution is more dense than NH3 dilution. This process approach is useful for flexible display application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gleskova, H., Wagner, S., Gasparik, V. and Kovac, P., Applied Surface Science 175-176, 1216 (2001).10.1016/S0169-4332(01)00050-2Google Scholar
2C. -S. Yang, Smith, L. L., Arthur, C. B. and Parsons, G.N., J. Vac. Sci. Technol. B 18(2), 683, (2000).Google Scholar
3 Yang, G.-R., Y-P. Zhao, Hu, Y.Z., Chow, T. Paul and Gutmann, Ronald J., Thin Solid Films 333, 219223, (1998).10.1016/S0040-6090(98)00818-9Google Scholar
4 Klein, Tonya M., Anderson, Timothy M., Chowdhury, Ashfaqul I. and Parsons, Gregory N., J. Vac. Sci. Technol. A 17(1), 108, (1999).10.1116/1.582104Google Scholar
5 Stryahilev, Denis, Sazonov, Andrei and Nathan, Arokia, J. Vac. Sci. Technol. A 20(3), 1087, (2002).10.1116/1.1472423Google Scholar
6 Sazonov, Andrei, Nathan, Arokia and Striakhilev, Denis, J. Non-Cryst. Sol. 266-269, 13291334, (2000).10.1016/S0022-3093(99)00946-1Google Scholar
7 Lanford, W. A. and Rend, M. J., J. Appl. Phys. 49 (4), 2473, (1978).10.1063/1.325095Google Scholar
8 Lee, J.W., Machenzie, K.D., Johnson, D., Sasserath, J.N., Perton, S.J. and Ren, F., J. electochemcal Soc. 147, 1481, (2000).10.1149/1.1393382Google Scholar
9 Lee, S.H., Lee, I. and Yi, J., Surface and Coating Technology 153, 6771, (2002).10.1016/S0257-8972(01)01554-7Google Scholar
10 Jonak-Auer, I., Meisels, R. and Kuchar, F., Infrared Physics & Technology 38, 223226, (1997).10.1016/S1350-4495(97)00011-XGoogle Scholar
11 Chow, Ray, Lanford, W. A., Ke-Ming, Wang and Roaler, Richard S., J. appl. Phys. 53 (8), 5630, (1982).10.1063/1.331445Google Scholar
12 Flewitt, A. J., Dyson, A. P., Robertson, J. and Milne, W. I., Thin Solid Films 383, 172177, (2001).10.1016/S0040-6090(00)01628-XGoogle Scholar