Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:29:45.176Z Has data issue: false hasContentIssue false

Long Term Oxidation of Model and Engineering TiAl Alloys

Published online by Cambridge University Press:  21 March 2011

Ivan E. Locci
Affiliation:
NASA-Glenn Research Center, Cleveland, OH 44135, [email protected]
Michael P. Brady
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
James L. Smialek
Affiliation:
NASA-Glenn Research Center, Cleveland, OH 44135, [email protected]
Get access

Abstract

The purpose of this research was to characterize the oxidation behavior of several model (TiAl, TiAl-Nb, TiAl-Cr, TiAl-Cr-Nb) and engineering alloys (XD, K5, Alloy 7, WMS) after long-term isothermal exposure (∼7000 h) at 704°C, and after shorter time exposure (∼1000 h) at 800°C in air. High-resolution field emission and microprobe scanning electron microscopy were used to characterize the scales formed on these alloys. Similarities and differences observed in the scales are correlated with the various ternary and quaternary microalloying additions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bartolotta, P.A. and Krause, D. L., NASA/TM-1999–209071, 1999.Google Scholar
2. Clemens, H., Kestler, H., Adv. Eng. Mater. 2 (9), 551 (2000).Google Scholar
3. Eylon, D., Keller, M. M. and Jones, P. E., Intermetallics 6 (7–8), 703 (1998).Google Scholar
4. Noda, T., Intermetallics 6 (7–8), 709 (1998).Google Scholar
5. Locci, I.E., Brady, M.P., Mackay, R.A. and Smith, J.W., Scripta Mat. 37 (6), 761 (1997).Google Scholar
6. Brady, M.P., Brindley, W.J., Smialek, J.L., Locci, I.E., JOM 48 (11), 46 (1996).Google Scholar
7. Jacobson, N.S., Brady, M. P., and Mehrotra, G. M., Oxidation of Metals 52, 537 (1999).Google Scholar
8. Haanappel, V.A.C. et al., Oxidation of Metals 48, 263 (1997).Google Scholar
9. Nombela, M., Kolarik, V., Gross, M., Fietzek, H., and Eisenreich, N., Matl. High Temp. 17, 49 (2000).Google Scholar
10. Rahmel, A., Quadakkers, W.J., and Schutze, M., Materials and Corrosion 46, 271 (1995).Google Scholar
11. Schaeffer, J.C. et al., in Gamma Titanium Aluminides, edited by Kim, Y-W et al. (TMS, 1995) p. 71.Google Scholar
12. Rakowski, J.M. et al., Scr. Metall. Mater. 33, 997 (1995).Google Scholar
13. Yoshihara, M., Miura, K. and Kim, Y-W, et al., Scr. Metall. Mater. 11, p. 93.Google Scholar
14. Dettenwanger, F. et al., Matls & Corrosion 48(1), 23 (1996).Google Scholar
15. Beye, R.W. and Gronsky, R., Acta Metall. Mater. 42 (4) 1373 (1994).Google Scholar
16. Lang, C. and Schutze, M., Mater. Corros. 48, 13 (1997).Google Scholar
17. Quadakkers, W.J., Zheng, N., Gil, A., Wallura, E., Hoven, H., High Temp. Corr. Prot. Mat. 4, 187 (1997).Google Scholar
18. Copland, E.H., Gleeson, B., Young, D.J., Acta Mater. 47(10), 2937 (1999).Google Scholar
19. Retallick, W.B., Brady, M.P., Humphrey, D.L., Intermetallics 6, 335 (1998).Google Scholar
20. Perez, P., Jimenez, J.A., Frommeyer, G., and Adv, P.. Matl. Sc. Eng. A 284, 138 (2000).Google Scholar
21. Magnan, J. et al., Met. and Mat. Trans. A 30, 19 (1999).Google Scholar
22. Haanappel, V.A.C. et al., Mat. High Temp. 14(1), 19 (1997).Google Scholar
23. Doychak, J., Raj, S. V., Locci, I.E., Hebsur, M., NASA CP-10082, 18 (1991).Google Scholar
24. Brady, M.P., Verink, E.D. Jr, Smith, J.W., Oxidation of Metals 51 (5–6), 539 (1999).Google Scholar
25. Shida, Y., and Anada, H., Oxidation of Metals 45 (1–2), 197 (1996).Google Scholar
26. Sunderkotter, J.D. et al., Intermetallics 5, 525 (1997).Google Scholar
27. Shemet, V. et al., Oxidation of Metals 54 (3–4), 211 (2000).Google Scholar