Article contents
Localized Dryout: an Approach for Managing the Thermal-Hydrological Effects of Decay Heat at Yucca Mountain
Published online by Cambridge University Press: 15 February 2011
Abstract
For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively-that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. “Extended dryout” achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. “Localized dryout”(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wail; this is done with close waste package spacing (generating a high line-heat load) and/or low-thermal-conductivity backfill in the drift. Backfill can greatly reduce relative humidity on the waste package in both the localized and extended dryout approaches. Besides using decay heat constructively, localized dryout reduces the possibility that far-field temperature rise and condensate buildup above the drifts might adversely affect waste isolation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 8
- Cited by