Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T03:56:23.254Z Has data issue: false hasContentIssue false

Localized Collection of Airborne Analytes: A Transport Driven Approach to Improve the Response Time of Existing Gas Sensor Designs including SERS based Detection of Small Molecules

Published online by Cambridge University Press:  08 May 2015

Jun Fang
Affiliation:
Electrical and Computer Engineering, University of Minnesota 200 Union St. SE, Minneapolis, MN 55455, USA
Se-Chul Park
Affiliation:
Electrical and Computer Engineering, University of Minnesota 200 Union St. SE, Minneapolis, MN 55455, USA
Leslie Schlag
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau Gustav-Kirchhoff-Strasse 1, D-98693 Ilmenau, Germany
Thomas Stauden
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau Gustav-Kirchhoff-Strasse 1, D-98693 Ilmenau, Germany
Joerg Pezoldt
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau Gustav-Kirchhoff-Strasse 1, D-98693 Ilmenau, Germany
Heiko O. Jacobs
Affiliation:
Fachgebiet Nanotechnologie, Technische Universität Ilmenau Gustav-Kirchhoff-Strasse 1, D-98693 Ilmenau, Germany
Get access

Abstract

The detection of single molecular binding events has been a recent trend in sensor research introducing various sensor designs where the active sensing elements are nanoscopic in size. Currently, diffusion-only-transport is often used and it becomes increasingly unlikely for an analyte molecule to “find” and interact with sensing structures where the active area is shrunk in size, trading an increased sensitivity with a long response time. This report introduces electrodynamic nanolens based analyte concentration concepts to transport airborne analytes to nanoscopic sensing points to improve the response time of existing gas sensor designs. In all cases we find that the collection rate is several orders of magnitudes higher than in the case where the collection is driven by diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Favier, F., Walter, E. C., Zach, M. P., Benter, T. and Penner, R. M., Science 293, 2227 (2001).CrossRefGoogle Scholar
Shen, F., Wang, J., Xu, Z., Wu, Y., Chen, Q., Li, X., Jie, X., Li, L., Yao, M., Guo, X. and Zhu, T., Nano Lett. 12, 3722 (2012).CrossRefGoogle Scholar
Ward, M. D. and Buttry, D. A., Science 249, 1000 (1990).CrossRefGoogle Scholar
Ikebukuro, K., Kiyohara, C. and Sode, K., Biosens. Bioelectron. 20, 2168 (2005).CrossRefGoogle Scholar
Krebs, P. and Grisel, A., Sens. Actuators, B 13, 155 (1993).CrossRefGoogle Scholar
Wagner, T., Haffer, S., Weinberger, C., Klaus, D., and Tiemann, M., Chem. Soc. Rev. 42, 4036 (2013).CrossRefGoogle Scholar
Arnold, M. S., Avouris, P., Pan, Z. W. and Wang, Z. L., J. Phys. Chem. B 107, 659 (2003).CrossRefGoogle Scholar
Kanaoka, C., Emi, H. and Tanthapanichakoon, W., AIChE J. 29, 895 (1983).CrossRefGoogle Scholar
Black, J. P., Elium, A., White, R. M., Apte, M. G., Gundel, L. A. and Cambie, R., Proc. IEEE Ultrasonics Symp. 476 (2007).Google Scholar
Yellen, B. B. and Friedman, G., Adv. Mater. 16, 111 (2004).CrossRefGoogle Scholar
Barry, C. R., Gu, J. and Jacobs, H. O., Nano Lett. 5, 2078 (2005).CrossRefGoogle Scholar
Mesquida, P. and Stemmer, A., Adv. Mater. 13, 1395 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
Lin, E.-C., Fang, J., Park, S.-C., Johnson, F. W. and Jacobs, H. O., Nat. Commun. 4, 1636 (2013).CrossRefGoogle Scholar
Lin, E.-C., Fang, J., Park, S.-C., Stauden, T., Pezoldt, J. and Jacobs, H. O., Adv. Mater. 25, 3554 (2013).CrossRefGoogle Scholar
Abdel-Salam, M., Nakano, M. and Mizuno, A., J. Phys. D: Appl. Phys. 40, 3363 (2007).CrossRefGoogle Scholar
Bamji, S. S., Bulinski, A. T. and Prasad, K. M., IEEE Trans. Electr. Insul. 28, 420 (1993).CrossRefGoogle Scholar
Yanallah, K. and Pontiga, F., Plasma Sources Sci. Technol. 21, 045007 (2012).CrossRefGoogle Scholar
Dick, L. A., McFarland, A. D., Haynes, C. L. and Duyne, R. P. V., J. Phys. Chem. B 106, 853 (2002).CrossRefGoogle Scholar