Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:43:20.997Z Has data issue: false hasContentIssue false

Local ferroelectric switching properties in BiFeO3 microstructures and their piezomagnetic response

Published online by Cambridge University Press:  26 February 2011

Catalin Harnagea
Affiliation:
[email protected], INRS-EMT, 1650 Lionel-Boulet, Varennes, QC, J3X1S2, Canada, 450-929-8146, 450-929-8102
Cristian Victor Cojocaru
Affiliation:
[email protected], INRS-EMT, Canada
Alain Pignolet
Affiliation:
[email protected], INRS-EMT, Canada
Get access

Abstract

We report here the successful fabrication of BiFeO3 (BFO) isolated micron-sized structures by pulsed laser deposition. The islands have a relatively constant aspect ratio (height/lateral size) of 0.1-0.3. We present their local ferroelectric characterization, using piezoresponse force microscopy (PFM), showing that the micron-sized BFO islands exhibit a strong piezoresponse and have ferroelectric domains with lateral sizes down to the 100 nm range. We also present here the first results of Magnetostriction Force Microscopy experiments performed on these structures. On ferromagnetic samples this method reveals a piezomagnetic or magnetostriction contrast, associated with magnetic domains. In our case, we show that the contrast can be associated to the magnetoelectric effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Smolenskii, G. A., Chupis, I., Sov. Phys. Usp. 25, 475 (1982).Google Scholar
[2] Kubel, F. and Schmid, H., Acta Crystallogr., Sect. B 46, 698 (1990).Google Scholar
[3] Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M. and Ramesh, R., Science 299, 1719 (2003).Google Scholar
[4] Yun, K.Y., Noda, M., Okuyama, M., Saeki, H., Tabata, H., and Saito, K., J. Appl. Phys. 96, 3399 (2004).Google Scholar
[5] Szafraniak, I., Harnagea, C., Scholz, R., Bhattacharyya, S., Hesse, D., and Alexe, M., Appl. Phys. Lett. 83, 2211 (2003).Google Scholar
[6] Harnagea, C., Pignolet, A., Alexe, M., Hesse, D., and Gösele, U., Appl. Phys. A: Mater. Sci. & Process. 70, 261 (2000).Google Scholar
[7] Wittborn, J., Rao, K. V., Nogues, J and Schuller, Ivan K., Appl. Phys. Lett. 70, 2931 (2000).Google Scholar
[8] Newnham, R. E., Properties of materials, Oxford University Press, 2004 Google Scholar
[9] Roelofs, A. Boettger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L. M., Appl. Phys. Lett. 77, 3444 (2000).Google Scholar
[10] In the rhombohedral symmetry, the possible domain walls are 180°, 71°, and 109°. Throughout this work, by 90° domain walls we refer in fact to non-180° domain walls.Google Scholar
[11] Harnagea, C., Pignolet, A., Alexe, M., and Hesse, D., Integr. Ferroelectr. 44, 113 (2003).Google Scholar
[12] Tabares-Munoz, C., Rivera, J.-P., Benzinges, A., Monnier, A., and Schmid, H., Jpn. J. Appl. Phys. 24 Sup.24-2, 1051 (1985).Google Scholar