Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T11:45:11.596Z Has data issue: false hasContentIssue false

Local Electromechanical Properties and Grain Size Effects in Ferroelectric Relaxors Studied by Scanning Piezoelectric Microscopy

Published online by Cambridge University Press:  11 February 2011

A. L. Kholkin
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
V. V. Shvartsman
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
M. Woitas
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, 3810–193 Aveiro, Portugal
A. Safari
Affiliation:
Department of Ceramics and Materials Engineering, Rutgers University, New Jersey 08854, U.S.A.
Get access

Abstract

The local electromechanical properties of relaxor 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMN-PT) films are investigated by Scanning Force Microscopy (SFM) in a piezoelectric contact mode. The domain contrast is observed only in some grains (∼20 % of the entire surface), which showed clear ferroelectric behavior. Thus on the microscopic level the material behaves as a composite with ferroelectric regions embedded in the non-polar matrix. This was attributed to the relaxor-to-ferroelectric phase transition induced by the internal bias field. The local hysteresis loops are found to depend on the size of the grains. A distinct correlation between the values of the effective piezoelectric coefficients, deffi and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff while relatively strong piezoelectric activity is characteristic of larger grains. In addition, large grains exhibit longer relaxation time after poling with an effective time constant increasing with the grain size. The nature of size effect is discussed taking in terms of dynamics of nanopolar clusters and SFM instrumentation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nomura, S. and Uchino, K., Ferroelectrics 41, 117 (1982).Google Scholar
2. Zhang, Q. M., Zhao, J., Shrout, T., Kim, N., Cross, L. E., Amin, A., and Kulwicki, B. M., J. Appl. Phys. 77, 2549(1995).Google Scholar
3. Li, J.-F., Viehland, D. D., Tani, T., Lakeman, C. D. E., and Payne, D. A., J. Appl. Phys. 75, 442 (1994).Google Scholar
4. Tyunina, M., Levoska, J., Sternberg, A., and Leppavuori, S., J. Appl. Phys. 86, 5179 (1999).Google Scholar
5. Kighelman, Z., Damjanovic, D., Seifert, A., Sagalowicz, L., and Setter, N., Appl. Phys. Lett. 73, 2281 (1998).Google Scholar
6. Park, J. H. and Trolier-McKinstry, S., J. Mater. Res. 16, 268 (2001)Google Scholar
7. Nagarajan, V., Ganpule, C. S., Nagaraj, B., Aggarwal, S., Alpay, A. P., Roytburd, A. L., Williams, E. D., and Ramesh, R., Appl. Phys. Lett. 75, 4183 (1999).Google Scholar
8. Tantigate, C., Lee, J., and Safari, A., Appl. Phys. Lett. 66, 1611 (1995).Google Scholar
9. Cross, L. E., Ferroelectrics 76, 241 (1987).Google Scholar
10. Sommer, R., Yushin, N. K., and van der Klink, J. J., Phys. Rev. B 48, 13230 (1993).Google Scholar
11. Randall, H.A., Bhalla, A. S., Jpn. J. Appl. Phys. 29, 327 (1990).Google Scholar
12. Graverman, A., Auciello, O., and Tokimoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).Google Scholar
13. Kholkin, A. L., Brooks, K. G., Taylor, D. V., Hiboux, S., and Setter, N., Integrated Ferroelectrics 22, 525 (1998).Google Scholar
14. Kholkin, A., Tantigate, G., and Safari, A., Integrated Ferroelectrics 22, 515 (1998).Google Scholar
15. Kighelman, Z., Damjanovic, D., and Setter, N., J. Appl. Phys. 89, 1393 (2001).Google Scholar
16. Shvartsman, V. V., Emelyanov, A., Kholkin, A. L., and Safari, A., Appl. Phys. Lett. 81, 117 (2002).Google Scholar
17. Smolenskii, G. A., Isupov, V. A., Agranovskaja, A. I., and Popov, S. N., Sov. Phys. Solid State 2, 2584(1960).Google Scholar
18. Mishima, T., Fujioka, H., Nagakari, Sh., Kamigaki, K., and Nambu, Sh., Jpn. J. Appl. Phys. 36, 6141 (1997).Google Scholar