Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T08:13:14.604Z Has data issue: false hasContentIssue false

Local Atomic Interdiffusion in CdTe/HgCdTe Multilayered Structures

Published online by Cambridge University Press:  26 February 2011

Y. Kim
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
A. Ourmazd
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
R. D. Feldman
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
J. A. Rentschler
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
D. W. Taylor
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
R. F. Austin
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
Get access

Abstract

We combine chemical lattice imaging with digital pattern recognition to study atomic interdiffusion at individual CdTe/HgCdTe interfaces in multi-quantum well structures. In this way we obtain quantitative composition profiles for “as grown” samples, and investigate their development as a function of annealing temperature. Our results indicate that interdiffusion depends on the position of the quantum well with respect to the surface, beginning first at quantum wells close to the surface, and proceeding towards the substrate. Our approach allows the quantification of interdiffusion as a function of time, temperature, and distance from the surface. The implications of these results for the stability of CdTe/HgCdTe structures, and the interpretation of X-ray data are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ourmazd, A., Taylor, D.W., Cunningham, J. and Tu, C.W., To be published.Google Scholar
2. Pamler, W., Appl. Phys. A 42 219 (1987).CrossRefGoogle Scholar
3. David Arch, K., Staudenmann, J.L., and Faurie, J.P., Appl. Phys. Lett. 48 1588 (1986).CrossRefGoogle Scholar
4. Jyh-Chwen, Lee, Schlesinger, T.E., and Kuech, T.F., J. Vac. Sci. Technol. B 5 (4), 1187 (1987).Google Scholar
5. Leopold, D.J., Broerman, J.G., Peterman, D.J., and Wroge, M.L., Appl. Phys. Lett. 52 969 (1988).CrossRefGoogle Scholar
6. Feldman, R.D., Cesar, C.L., Islam, M.N., Austin, R.F., DiGiovanni, A.E., Shah, J., Spitzer, R. and Orenstein, J., J. Vac. Sci. Technol., in press.Google Scholar
7. Ourmazd, A., Tsang, W.T., Rentschler, J.A., and Taylor, D.W., Appl. Phys. Lett. 50 1417 (1987).CrossRefGoogle Scholar
8. Ourmazd, A., Defects in Semiconductors edited by von Bardeleben, H.J. (Trans Tech Publication Ltd., Switzeland, 1986) Materials Science Forum Volumes 10–12, pp. 735–744.Google Scholar
9. Bevington, P.R., Data Reduction and Error Analysis for the Physical Sciences (McGRAW-HILL Book Company, New York,1969), chapter 11.Google Scholar