Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:41:03.568Z Has data issue: false hasContentIssue false

Lithium Ion Diffusion Measurements in High Quality LiCoO2 thin Film Battery Cathodes

Published online by Cambridge University Press:  10 February 2011

Christian S. Bahn
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
Jeanne M. McGraw
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
John D. Perkins
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
Phillip A. Parilla
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
Get access

Abstract

Highly crystalline, textured thin films of LiCoxAl1-xO2 (x=0, 0.5) have been grown by pulsed laser deposition. Films of both stoichiometries were dense and uniaxially textured with Li, Co (or Co, A1) layers parallel to the substrate. It was found that crystal quality depended strongly on oxygen partial pressure, substrate temperature, and substrate material. The deposition of LiCo0.5Al0.5O2 is also highly dependent upon laser fluence, requiring at least 12.8 J/cm2 for high quality films. Chemical diffusion measurements were performed over a wide range of lithium contents using the potentiostatic intermittent titration technique. Maximum and minimum effective for LiCoO2 were 4.0 × 10−11 and 1.2 × 10−2 cm2/s, respectively, and for LiCo0.5A10.5O2, 2.2 × 10−12 and 8.0 × 10−17 cm2/s, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagaura, T.; Tozawa, K., Prog. Batt. Solar Cells 1990, 9, 209.Google Scholar
2. Ceder, G.; Chiang, Y.-M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y.-I.; B., Huang, Nature 1998, 392, 694.Google Scholar
3. Ohzuku, T.; Ueda, A., J. Electrochem. Soc. 1994, 141, 29722977.Google Scholar
4. Wen, C. J.; Boukamp, A.; Huggins, R. A.; W., Weppner, J. Electrochem. Soc. 1979, 126 22582266.Google Scholar
5. Crank, J. The Mathematics Of Diffusion; Oxford University Press: London, 1967.Google Scholar
6. Chen, C. H.; Kelder, E. M.; Jak, M. J. G.; J., Schoonman, Solid State Ionics 1996, 86–88, 13011306.Google Scholar
7. Goldner, R. B.; Slaven, S.; Liu, T. Y.; Haas, T. E.; Arntz, F. O.; P., Zerigan, Mat. Res. Soc. Symp. Proc. 1995, 369, 137147.Google Scholar
8. Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D., J. Electrochem. Soc. 1996, 143, 32033213.Google Scholar
9. Hart, F. X.; Bates, J. B., J. Appl. Phys. 1998, 83, 75607566.Google Scholar
10. S., Whittingham, Private Communication.Google Scholar