Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:57:15.810Z Has data issue: false hasContentIssue false

Light Splitting Function of Branched Chains of Microspheres Fabricated by Self-Assembly Process

Published online by Cambridge University Press:  16 March 2012

Tadashi Mitsui
Affiliation:
Surface Physics and Structure Unit, National Institute for Materials Science, Sakura 3-13, Tsukuba 305-0003, JAPAN.
Yutaka Wakayama
Affiliation:
Nano-Electronic Materials Unit, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-0044, JAPAN.
Tsunenobu Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Takeru Hayashi
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Naoki Ikeda
Affiliation:
Nanotechnology Innovation Station, National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047, JAPAN.
Yoshimasa Sugimoto
Affiliation:
Nanotechnology Innovation Station, National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047, JAPAN.
Tadashi Takamasu
Affiliation:
Surface Physics and Structure Unit, National Institute for Materials Science, Sakura 3-13, Tsukuba 305-0003, JAPAN.
Hidetoshi Oikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN.
Get access

Abstract

Using a self-assembly process, we fabricated ordered chains of transparent polystyrene microspheres that have 30°- and 60°-branched structures and that act as coupled-resonator optical waveguides (CROWs). We then observed the optical properties of propagation light through the CROWs. The light spectra were directly measured by guide-collection-mode near-field scanning optical microscopy (NSOM) techniques. The spectrum of light propagating to the 60°-branch shows some sharp peaks, which seem to be associated with whispering gallery modes (WGMs). On the other hand, the spectrum of light propagating to the 30°-branch shows rather broad peaks. Moreover, we observed the detailed structures of the CROWs by high-resolution scanning electron microscopy (HR-SEM), and performed a finite-difference time-domain (FDTD) simulation to explain the NSOM spectra. The results suggest that the microspheres’ branching chains themselves have a light-splitting function, which is a kind of wavelength-selective filter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Almeida, V. R., Barrios, C. A., Panepucci, R. R., and Lipson, M., Nature 431, 10811084 (2004).10.1038/nature02921Google Scholar
2. Hill, M. T., Dorren, H. J. S., de Vries, T., Leijtens, X. J. M., den Besten, J. H., Smalbrugge, B., Oei, Y.-S., Binsma, H., Khoe, G.-D., and Smit, M. K., Nature 432, 206209 (2004).10.1038/nature03045Google Scholar
3. Möller, B. M., Woggon, U., and Artemyev, M. V., Opt. Lett. 30, 21162118 (2005).10.1364/OL.30.002116Google Scholar
4. Yariv, A., Xu, Y., Lee, R. K., and Scherer, A., Opt. Lett. 24, 711713 (1999).10.1364/OL.24.000711Google Scholar
5. Astratov, V. N., Franchak, J. P., and Ashili, S. P., Appl. Phys. Lett. 85, 55085510 (2004).10.1063/1.1832737Google Scholar
6. van Blaaderen, A., Ruel, R., and Wiltzius, P., Nature, 385, 321324 (1997).10.1038/385321a0Google Scholar
7. Onodera, T., Takaya, Y., Mitsui, T., Wakayama, Y., and Oikawa, H., Jpn. J. Appl. Phys. 47, 14041407 (2008).10.1143/JJAP.47.1404Google Scholar
8. Akiyama, S., Popovic, M. A., Rakich, P. T., Wada, K., Michel, E., Haus, H. A., Ippen, E. P., and Kimerling, L. C., J. Lightwave Technol. 23, 22712277 (2005).10.1109/JLT.2005.850047Google Scholar
9. Talneau, A., Le Gouezigou, L., Bouadma, N., Kafesaki, M., Soukoulis, C. M., and Agio, M., Appl. Phys. Lett. 80, 547549 (2002).10.1063/1.1445270Google Scholar
10. Barrelet, C. J., Greytak, A. B., and Lieber, C. M., Nano Lett. 4, 19811985 (2004).10.1021/nl048739kGoogle Scholar
11. Takazawa, K., Kitahama, Y., Kimura, Y., and Kido, G., Nano Lett. 5, 12931296 (2005).10.1021/nl050469yGoogle Scholar
12. Kapitonov, A. M. and Astratov, V. N., Opt. Lett. 32, 409411 (2007).10.1364/OL.32.000409Google Scholar
13. Yang, S. and Astratov, V. N., Appl. Phys. Lett. 92, 261111 (2008).10.1063/1.2954013Google Scholar
14. Chen, Z., Taflove, A., and Backman, V., Opt. Lett. 31, 389391 (2006).10.1364/OL.31.000389Google Scholar
15. Pishko, S. V., Sewell, P. D., Benson, T. M., and Boriskina, S. V., J. Lightwave Technol. 25, 24872494 (2007).10.1109/JLT.2007.903295Google Scholar
16. Boriskina, S. V., Opt. Express 15, 1737117379 (2007).10.1364/OE.15.017371Google Scholar
17. Mitsui, T., Wakayama, Y., Onodera, T., Takaya, Y., and Oikawa, H., Opt. Lett. 33, 11891191 (2008).10.1364/OL.33.001189Google Scholar
18. Tsai, D. P., Jackson, H. E., Reddick, R. C., Sharp, S. H., and Warmack, R. J., Appl. Phys. Lett. 56, 15151517 (1990).10.1063/1.103160Google Scholar
19. Lieberman, K., Ben-Ami, N., and Lewis, A., Rev. Sci. Instrum. 67, 35673572 (1996).10.1063/1.1147175Google Scholar
20. Mitsui, T., Wakayama, Y., Onodera, T., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H., Adv. Mater. 22, 30223026 (2010).10.1002/adma.201000155Google Scholar
21. Tymczenko, M., Marsal, L. F., Trifonov, T., Rodriguez, I., Ramiro-Manzano, F., Pallares, J., Rodriguez, A., Alcubilla, R., and Meseguer, F., Adv. Mater. 20, 23152318 (2008).10.1002/adma.200701526Google Scholar
22. Mitsui, T., Onodera, T., Wakayama, Y., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H., Opt. Express 19, 2225822267 (2011).10.1364/OE.19.022258Google Scholar