Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T19:45:20.651Z Has data issue: false hasContentIssue false

Light Soaking and Thermal Annealing Effects on the Micro-Electrical Properties of Amorphous and Nanocrystalline Mixed-phase Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Chunsheng Jiang
Affiliation:
[email protected], National renewable energy laboratory, NCPV, 1617 Cole Blvd., Golden, CO, 80401, United States, 303-384-6687, 303-384-6604
B. Yan
Affiliation:
[email protected], United Solar Ovonic LLC, Troy, MI, 48084, United States
H. R. Moutinho
Affiliation:
[email protected], National renewable energy laboratory, Golden, CO, 80401, United States
M. M. Al-Jassim
Affiliation:
[email protected], National renewable energy laboratory, Golden, CO, 80401, United States
J. Yang
Affiliation:
[email protected], United Solar Ovonic LLC, Troy, MI, 48084, United States
S. Guha
Affiliation:
[email protected], United Solar Ovonic LLC, Troy, MI, 48084, United States
Get access

Abstract

We report on the measurement of local current flow in hydrogenated amorphous and nanocrystalline mixed-phase n-i-p silicon solar cells in the initial, light-soaked, and annealed states using conductive atomic force microscopy (C-AFM). The C-AFM measurement shows that the nanometer-size grains aggregate, and the local current densities in the nanocrystalline aggregation areas decreased significantly after light soaking and recovered to values similar to the initial state after annealing at a high temperature in a vacuum. This result supports the model of two parallel-connected diodes for explaining the light-induced open-circuit voltage increase in the mixed-phase solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lord, K., Yan, B., Yang, J., and Guha, S., Appl. Phys. Lett. 79, 3800 (2001).Google Scholar
[2] Yang, J., Lord, K., Yan, B., Banerjee, A., Guha, S., Han, D., and Wang, K., Mat. Res. Soc. Symp. Proc. 715, 601 (2002).Google Scholar
[3] Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[4] Yan, B., Yang, J., and Guha, S., Proc. of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003, p. 1627.Google Scholar
[5] Yan, B., Jiang, C.-S., Moutinho, H. R., Al-Jassim, M. M., and Yang, J., Guha, S., Mat. Res. Soc. Symp.Proc., A23.6 (2006);Google Scholar
Yan, B., Jiang, C.-S., Teplin, C. W., Moutinho, H. R., M. Al-Jassim, M., Yang, J., and Guha, S., J. Appl. Phys. 101, 033711 (2007).Google Scholar
[6] Jiang, C.-S., Moutinho, H. R., Al-Jassim, M.M., Kazmerski, L. L., Yan, B., Owens, J. M., Yang, J., and Guha, S., Proc. of 4th World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 2006, p. 1552.Google Scholar
[7] Rezek, B., Stuchlík, J., Fejfar, A., and Kočka, J., J. Appl. Phys. 92, 587 (2002).Google Scholar
[8] Azulay, D., Balberg, I., Chu, V., Conde, J. P., and Millo, O., Phys. Rev. B 71, 113304 (2005).Google Scholar
[9] Bo, X. -Z, Rokhinson, L. P., Haizhou, Y., Tsui, D. C., and Sturm, J. C., Appl. Phys. Lett. 81, 3263 (2002)Google Scholar
[10] Myhra, S., Appl. Phys. A76 63 (2003).Google Scholar