Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T12:44:01.411Z Has data issue: false hasContentIssue false

Ligand Control of Semiconductor Nanocrystals for Efficient Carrier Injection

Published online by Cambridge University Press:  01 February 2011

Tomohide Murase
Affiliation:
Nanomaterials Laboratory, Research and Technology Development Division, Mitsubishi Chemical Group Science and Technology Research Center, Inc. 1000. Kamoshida-cho, Aoba-ku, Yokohama 227–8502, Japan
Harumi Asami
Affiliation:
Nanomaterials Laboratory, Research and Technology Development Division, Mitsubishi Chemical Group Science and Technology Research Center, Inc. 1000. Kamoshida-cho, Aoba-ku, Yokohama 227–8502, Japan
Itaru Kamiya
Affiliation:
Nanomaterials Laboratory, Research and Technology Development Division, Mitsubishi Chemical Group Science and Technology Research Center, Inc. 1000. Kamoshida-cho, Aoba-ku, Yokohama 227–8502, Japan
Get access

Abstract

Inorganic/organic hybrid material of CdSe/ZnS core/shell nanocrystals (NCs) covered with organic ligands was prepared with ligand exchange reaction in order to facilitate carrier injection into NCs through the organic ligands. The organic ligands used in this study, 2-naphtalenethiol and bathophenanthroline, were selected as model compounds according to adjustment of highest occupied molecular orbital and lowest unoccupied molecular orbital of the ligand to valence band maximum and conduction band minimum of the CdSe NCs, respectively. The prepared hybrid NCs easily disperse in polar organic solvents such as CHCl3 and show photoluminescence only from the CdSe/ZnS core/shell NCs. Current-voltage characteristics of the ligand exchanged NCs thin films sandwiched between electrodes were investigated. It was shown that conductivity of the film was improved by the introduction of carrier injecting ligands in comparison to the ligand unexchanged trioctylphosphine oxide-capped CdSe/ZnS NC thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andres, R. P., Bielefield, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Mahoney, W. J. and Hsifchin, R. G., Science 273, 1690 (1996).Google Scholar
2. Mattoussi, H., Radzilowski, L., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G. and Rubner, M.F., J. Appl. Phys. 83, 7965 (1998).Google Scholar
3. Coe, S., Woo, W-K., Bawendi, M. and Bulovic, V., Nature 420, 800 (2002).Google Scholar
4. Huynh, W. U., Peng, X. and Alivisatos, A. P., Adv. Mater. 11, 923 (1999).Google Scholar
5. Greenham, N. C., Peng, X. and Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).Google Scholar
6. Schmelz, O., Mews, A., Basche, T., Herrmann, A. and Mullen, K., Langmuir 17, 2861 (2001).Google Scholar
7. Milliron, D. J., Alivisatos, A. P., Pitois, C., Edder, C. and Fréchet, J. M. J., Adv. Mater. 15, 58 (2003).Google Scholar
8. Hikmet, R. A. M., Talapin, D. V. and Weller, H., J. Appl. Phys. 93, 3509 (2003).Google Scholar
9. Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 15, 8706 (1993).Google Scholar
10. Katari, J. E. B., Colvin, V. L. and Alivisatos, A. P., J. Phys. Chem. 98, 4109 (1994).Google Scholar
11. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulee, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M. G., J. Phys. Chem. B 101, 9463 (1997).Google Scholar
12. Ginger, D. S. and Greenham, N. C., J. Appl. Phys. 87, 1361 (2000).Google Scholar
13. Kim, B. S., Islam, M. A., Brus, L. E. and Herman, I. P., J. Appl. Phys. 89, 8217 (2001).Google Scholar
14. Wang, Y., Herron, N., Grushin, V. V., LeCloux, D. and Petrov, V., Appl. Phys. Lett. 79, 449 (2001).Google Scholar
15. Lias, S. G., Bartmess, J. E., Holmes, J. L., Levin, R. D., Liebman, J. F. and Mallard, W. G., J. Phys. Chem. Ref. Data 17, Suppl., 1 (1988).Google Scholar