Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T16:03:45.289Z Has data issue: false hasContentIssue false

LiBH4@Carbon Micro-Macrocellular Foams: Tuning Hydrogen Release through Varying Microporosity

Published online by Cambridge University Press:  02 April 2013

Nicolas Brun
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Raphaël Janot
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, UMR 6007 CNRS, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France.
Chrystel Gervais
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574 CNRS, UPMC, Université Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France.
Clément Sanchez
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574 CNRS, UPMC, Université Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France.
Rénal Backov
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Get access

Abstract

Microporous-macroporous carbononaceous monolith-type materials, prepared through a hard template method using silica as exo-templating matrices, have been impregnated by an etheric solution of LiBH4 to prepare LiBH4@Carbon samples. It has been shown that the amorphous character of LiBH4 is largely favoured when developing the carbon microporosity (pores smaller than 2 nm) and that LiBH4 dehydrogenation is strongly enhanced at low temperatures. The onset temperature of dehydrogenation can be decreased to 200°C and hydrogen capacity reaching 4.0 wt.% is obtained at 300°C with the carbon having the largest microporous volume, whereas the hydrogen release for bulk LiBH4 is negligible at the same temperature. In addition to some irreversible reactions with carbon surface groups the explanation for such modification could lie in the LiBH4 destabilization through confinement to the nanoscale range and associated amorphization.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(a) Züttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, P., Emmenegger, C., J. Alloys Compd. 356357, 515 (2003); (b) A. Züttel, A. Borgschulte, S. Orimo, Scripta Mater. 56, 823 (2007).CrossRefGoogle Scholar
Gross, A., Vajo, J., Van Atta, S., Olson, G., J. Phys. Chem. C 112, 5651 (2008).CrossRefGoogle Scholar
Brun, N., Prabaharan, S., Morcrette, M., Sanchez, C., Pécastaing, G., Derré, A., Soum, A., Deleuze, H., Birot, M., Backov, R., Adv. Funct. Mater. 19, 3136 (2009).CrossRefGoogle Scholar
Soulié, J.P., Renaudin, G., Cerny, R., Yvon, K., J. All. Comp. 346, 200 (2002).CrossRefGoogle Scholar
Cahen, S., Eymery, J.B., Janot, R., Tarascon, J.M., J. Power Sources 189, 902 (2009).CrossRefGoogle Scholar