Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:14:42.482Z Has data issue: false hasContentIssue false

The Li-adsorbed C(100)-(1x1):O Diamond Surface

Published online by Cambridge University Press:  02 March 2011

Kane M. O’Donnell
Affiliation:
The Bristol Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, BS8 1FD, United Kingdom. School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1FD
Tomas L. Martin
Affiliation:
School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1FD H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1FD, United Kingdom.
Neil A. Fox
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1FD, United Kingdom.
David Cherns
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1FD, United Kingdom.
Get access

Abstract

This paper presents density functional theory results for the Li-adsorbed C(100)-(1x1):O system. Previously it has been shown that at a single monolayer coverage, the binding energy for Li on oxygenated C(100) diamond is substantially higher than that of heavier alkali metals, while at the same time, the presence of the lithium generates a large shift in the diamond workfunction. The system is therefore promising for electronics applications involving diamond. Here, further calculations are presented showing that additional Li atoms above 1ML coverage are far less strongly bound, suggesting the 1ML surface is the most useful for vacuum microelectronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takahashi, K., Tanga, M., Takai, O. and Okamura, H., Diamond Relat. Mater. 12, 572 (2003).Google Scholar
2. Ristein, J., J. Phys. D: Appl. Phys. 39, R71 (2006).Google Scholar
3. Maier, F., Riedel, M., Mantel, B., Ristein, J., and Ley, L., Phys. Rev. Lett. 85(16), 3472 (2000).Google Scholar
4. Garrido, J. A., Nebel, C. E., Todt, R., Rösel, G., Amann, M. C., Stutzmann, M., Snidero, E. and Bergonzo, P., Appl. Phys. Lett. 82(6), 988 (2003).10.1063/1.1545152Google Scholar
5. Baumann, P. K. and Nemanich, R. J., Diamond Relat. Mater. 4(5-6), 802 (1995).10.1016/0925-9635(94)05228-XGoogle Scholar
6. Baumann, P. K. and Nemanich, R. J., Appl. Surf. Sci. 104, 267 (1996).Google Scholar
7. Jones, F., Molloy, A., Loh, K. P., Foord, J. S. and Jackman, R., Diamond Relat. Mater. 7, 651 (1998).10.1016/S0925-9635(97)00293-8Google Scholar
8. Diederich, L., Aebi, P., Küttel, O. M. and Schalpabach, L., Surf. Sci. 424(2), 314 (1999).Google Scholar
9. Rutter, M., Robertson, J., Phys. Rev. B 57(15), 9241 (1998).Google Scholar
10. Van der Weide, J., Zhang, Z., Baumann, P. K., Wensell, M. G., Bernholc, J. and Nemanich, R. J., Phys. Rev. B 50(8), 5803 (1994).10.1103/PhysRevB.50.5803Google Scholar
11. O’Donnell, K. M., Martin, T. L., Fox, N. A. and Cherns, D., Phys. Rev. B 82, 115303 (2010).10.1103/PhysRevB.82.115303Google Scholar
12. Maier, F., Ristein, J. and Ley, L., Phys. Rev. B 64(16), 165441 (2001).Google Scholar
13. Baumann, P. K. and Nemanich, R. J., J. Appl. Phys. 83, 2072 (1998).Google Scholar
14. Küttel, O. M., Gröning, O., Schaller, E., Diederich, L., Gröning, P., and Schalpabach, L., Diamond Relat. Mater. 5(6-8) 807 (1996).10.1016/0925-9635(95)00418-1Google Scholar
15. Nie, J. L., Xiao, H. Y., Zu, X. T. and Gao, F., Chem. Phys. 326(2-3), 308 (2006); Physica B 383(2), 219(2006). 10.1016/j.chemphys.2006.02.005Google Scholar
16. Czech, B., Mikoålajczyk, P. and Stankiewicz, B., Appl. Surf. Sci. 256(15), 4784 (2010).Google Scholar
17. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892Google Scholar
18. Perdew, J. P. and Wang, Y., Phys. Rev. B 46, 12947 (1992).Google Scholar
19. Monkhorst, H. and Pack, J., Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Google Scholar
20. Fall, C., Binggeli, N. and Baldereschi, A., J. Phys.: Condens. Mater. 11, 2689 (1999).Google Scholar