Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:29:37.975Z Has data issue: false hasContentIssue false

Layered Structure in Melt-Processed BSCCO and YBCO Superconductors

Published online by Cambridge University Press:  26 February 2011

S. Jin
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. K. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. H. Tiefel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Because of the natural preference for crystal growth in the a-b direction, melt-processed YBCO as well as BSCCO tends to show a local texture with large parallel plates aligned in the direction of CuO2 planes. In YBCO, macroscopically layered and bi-axially textured material can be achieved over extended sample lengths through the use of temperature gradient during melt-texture processing. In BSCCO, a layered structure is relatively easily obtained by subjecting thin ribbon samples in contact with silver to a partial melt processing. While the nature and the mechanism of layer formation may not be the same, the layer configuration in both YBCO and BSCCO is essential for overcoming the grain boundary weak link problem and achieving high transport Jc. In this paper, the process and the mechanism of layer formation will be described, and the implications on superconductor properties will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A. and Keith, H. D., Appl. Phys. Lett., 52 (1988) 2074.Google Scholar
2. Salama, K., Selvamanickam, V., Gao, L. and Sun, K., Appl. Phys. Lett., 54 (1989) 2352.Google Scholar
3. Murakami, M., Monta, M., Doi, L. and Miyamoto, K., Jpn. J. Appl. Phys., 28 (1989)1189.Google Scholar
4. McGinn, P. J., Chen, W., Zhu, N., Balachandran, U. and Lanagam, M. T., Physica C, 765 (1989)480.Google Scholar
5. Neal, M. J., Chandler, D. B., Klemptner, L. J., and Parish, M. V., IEEE Trans. Appl. Supercond. (to be published).Google Scholar
6. Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H. and Chu, C. W., Nature, 345 (1990) 326.Google Scholar
7. Zhou, L., Supercond. Sci. Technology, 3 (1990) 490.Google Scholar
8. Hikata, T., Ueyama, M., Mukai, H., and Sato, K., Cryogenics, 30 (1990) 924.Google Scholar
9. Sato, K., Shibuta, N., Mukai, H., Hikata, T., Ueyama, M., and Kato, T., J. Appl. Phys., 70 (1991) 6484.Google Scholar
10. Enomoto, N., Kikuchi, H., Uno, N., Kumakura, H., Togano, K. and Watanabe, K., Jpn. J. Appl. Phys., 29 (1990) L447.Google Scholar
11. Flukiger, R., Graf, T., Decroux, M., Groth, C., and Yamada, Y., IEEE Trans. Magn., 27 (1991) 1258.Google Scholar
12. Haldar, P., Hoehn, J. G. Jr, Rice, J. A., and Motowidlo, L. R., Appl. Phys. Lett., 60(1992)495.Google Scholar
13. Okada, M., Nishiwaki, R., Kamo, T., Matsumoto, T., Aihara, K., Matsuda, S., and Seido, M., Jpn. J. Appl. Phys., 27 (1988) L2345.Google Scholar
14. Kase, J., Togano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys., 29 (1990) L1096.Google Scholar
15. Jin, S., van Dover, R. B., Tiefel, T. H., Graebner, J. E., and Spencer, N. D., Appl. Phys. Lett., 58 (1991) 868.Google Scholar
16. Jin, S., Graebner, J. E., Tiefel, T. H., van Dover, R. B., White, A. E., and Kammlott, G. W., Physica, C177 (1991) 189.Google Scholar
17. Narumi, E., Song, L. W., Yan, F., Patel, S., Kao, Y. H., and Shaw, D. T., Appl. Phys. Lett., 58 (1991) 1202.Google Scholar
18. Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl Phys. Lett., 60 (1992) 769.Google Scholar
19. Jin, S. and Graebner, J. E., Mater. Sci. Eng., B7 (1991) 243.Google Scholar
20. Babcock, S. E., Cai, X. Y., Kaiser, D. L. and Larbalestier, D. C., Nature, 347 (1990) 167.Google Scholar
21. Chan, S. W., Hwang, D. M., Ramesh, R., Sampere, S. M., Nazar, L., Gerhardt, R., and Pruna, P., in High Tc Superconducting Thin Films, edited by Stockbaur, R. (American Institute of Physics, New York, 1990) p. 172.Google Scholar
22. Tiefel, T. H., Jin, S., Sherwood, R. C., Davis, M. E., Kammlott, G. W., Gallagher, P. K., Johnson, D. W. Jr, Fastnacht, R. A., and Rhodes, W. W., Mater. Lett., 7 (1989) 363.Google Scholar
23. Dimos, D., Chaudhari, P. and Mannhart, J., Phys. Rev. B, 41 (1990) 4038.Google Scholar
24. Ekin, J. W., Hart, H. R., and Wolf, W. P., J. Appl. Phys., 68(1090) 2285.Google Scholar
25. Malozemoff, A. P., Proc. 1991 NYSIS Conf. on High Tc Superconductors (AIP Conf. Proc.), to be published.Google Scholar
26. Mannhart, J. and Tsuei, C., Z. Physik, B77 (1989) 53.Google Scholar
27. Clarke, D. R., Shaw, T. M., and Dimos, D., J. Amer. Ceram. Soc, 72 (1989) 1103.Google Scholar
28. Ray, K., AIP Conf. Proc, ed. Kao, Y. H. (American Institute of Physics, New York, 1991) p. 119.Google Scholar
29. Eibl, O., Physica, C168 (1990) 239.Google Scholar
30. Zanderbergen, H. W., Grnoski, R., and Thomas, G., Physica, C153–155 (1988) 1002.Google Scholar
31. Kes, P. H., Aarts, J., Vinokur, V. M., and van der Beek, C. J., Phys. Rev. Lett., 64 (1990) 1063.Google Scholar
32. Martin, S., Fiory, A. T., Fleming, R. M., Schneemeyer, L. F., and Waszczak, J. V., Phys. Rev. Lett., 60 (1988) 2194.Google Scholar
33. Martin, S., Fiory, A. T., Fleming, R. M. and Cooper, A. S., Appl. Phys. Lett., 54 (1989) 72.Google Scholar
34. Gayle, T. W. and Kaiser, D. L., J. Mater. Res., 6 (1991) 908.Google Scholar
35. Tornita, N., Takahashi, Y., and Ishida, Y., Jpn. J. Appl. Phys., 29 (1990) L30.Google Scholar