Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T21:08:38.841Z Has data issue: false hasContentIssue false

Layer Disordering and Carrier Concentration in Heavily Carbon-Doped AlGaAs/GaAs Superlattices

Published online by Cambridge University Press:  22 February 2011

H. M. You
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
U. M. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
G. E. Höfler
Affiliation:
Department of Electrical and Computer Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61801
K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61801
N. Holonyak Jr.
Affiliation:
Department of Electrical and Computer Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61801
S.-T. Lee
Affiliation:
Eastman Kodak Company, Corporate Research Laboratory, Rochester, NY 14650
Get access

Abstract

Al-Ga interdiffusion, carbon acceptor diffusion, and hole reduction were studied in carbondoped Al0.4Ga0.6As/GaAs superlattices (SL). Al-Ga interdiffusion was found to be most prominent for Ga-rich annealing, with the hole concentrations in the SL almost intact during annealing. For As-rich annealing, the interdiffusivity values, DAI.Ga, are in approximate agreement with those predicted by the Fermi-level effect model, and the hole concentrations in the SL decreased dramatically after annealing. By analyzing the measured hole concentration profiles, it was found that both carbon acceptor diffusion and reduction have occurred during annealing, with both depending on As4 pressure values to the one quarter power. These As4 pressure dependencies indicate that carbon diffuses via the interstitial-substitutional mechanism while hole reduction is governed by a precipitation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cunningham, B. T., Guido, L. J., Baker, J. E., Major, J. S. Jr., Holonyak, N. Jr., and Stillman, G. E., Appl. Phys. Lett. 55, 687 (1989).Google Scholar
2. Konagai, M., Yamada, T., Akatsuka, T., Saito, K., and Tokumitsu, E., J. Cryst. Growth 98, 167 (1989).Google Scholar
3. Guido, L. J., Cunningham, B. T., Nam, D. W., Hsieh, K. C., Plano, W. E., Major, J. S. Jr., Vesely, E. J., Sugg, A. R., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 67, 2179 (1990).Google Scholar
4. Szafranek, I., Szafranek, M., Cunningham, B. T., Guido, L. J., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 68, 5615 (1990).Google Scholar
5. Jamal, Z. and Goodhew, P. J., in Chemical Perspectives of Microelectronic Materials III, eds. Abernathy, C. R., Bates, C. W. Jr., Bohling, D. A., and Hobson, W. S., Mater. Res. Soc. Proc. vol. 282 (Mater. Res. Soc., Pittsburgh, PA, 1993) in press.Google Scholar
6. Höfler, G. E., Höfler, H. J., Holonyak, N. Jr., and Hsieh, K. C., J. Appl. Phys. 72, 5318 (1992).Google Scholar
7. Chiu, T. H., Cunningham, J. E., Ditzenberger, J. A., Jan, W. Y., and Chu, S. N. G., J. Crys. Growth 111, 274 (1991).Google Scholar
8. Saito, K., Tokumitsu, E., Akatsuka, T., Miyauchi, M., Yamada, T., Konagai, M., and Takahashi, K., J. Appl. Phys. 64, 3975 (1988).Google Scholar
9. Watanabe, K. and Yamazaki, H., Appl. Phys. Lett. 59, 434 (1991).Google Scholar
10. Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750 (1989).Google Scholar
11. Enquist, P., J. Appl. Phys. 71, 704 (1992).Google Scholar
12. Hanna, M. C., Majerfeld, A., and Szmyd, D. M., Appl. Phys. Lett. 59, 2001 (1991).Google Scholar
13. Hoke, W. E., Lemonias, P. J., Weir, D. G., Hendriks, H. T., and Jackson, G. S., J. Appl. Phys. 69, 511 (1991).Google Scholar
14. Konagai, M., Mat. Sci. Forum 117–118, 37 (1993).Google Scholar
15. Han, W. Y., Lu, Y., Lee, H. S., Cole, M. W., Schauer, S. N., Moerkirk, R. P., Jones, K. A., and Yang, L. W., Appl. Phys. Lett. 61, 87 (1992).Google Scholar
16. Tan, T. Y., Yu, S., and Gösele, U., J. Appl. Phys. 70, 4823 (1991).Google Scholar
17. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
18. Tan, T. Y., Gösele, U., and Yu, S., Cri. Rev. Sol. Stat. Mater. Sci. 17, 47 (1991).Google Scholar
19. Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
20. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).Google Scholar