Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:21:35.119Z Has data issue: false hasContentIssue false

Lattice Temperature of GaAs and Si During Nanosecond Laser Annealing

Published online by Cambridge University Press:  22 February 2011

A. Pospieszczyk
Affiliation:
Association Euratom-KFA, Institut für Plasmaphysik, Kernforschungsanlage Jülich, D-5170 Jülich, FRG,
M. Abdel Harith
Affiliation:
Association Euratom-KFA, Institut für Plasmaphysik, Kernforschungsanlage Jülich, D-5170 Jülich, FRG, Department of Physics, Cairo University, Cairo, Egypt,
B. Stritzker
Affiliation:
Institut für Festkörperforschung, Kernforschungsanlage Jülich, D-5170 Jülich, FRG
Get access

Abstract

Single crystals of GaAs (100) and Si (110) were laser annealed with a 20 ns ruby laser pulse. Both the velocity distribution and the density variation of evaporated Ga or As and Si atoms were determined by a time-of-flight measurement. In addition time-resolved measurements were made of the reflectivity of the surface during the laser annealing. The data consistently show that the molten phase occurs at energy densities of ≳ 0.35 J cm–2 for GaAs and ≳O.8 J cm for Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bloembergen, N., Kurz, H., Liu, J. M., and Yen, R., in Laser and Electron Beam Interactions with Solids, Appleton, B.R. and Cellar, G. K. eds. (North Holland, New York, 1982), p. 3.Google Scholar
2.Wang, J. C., Wood, R. F. and Pronko, P.P., Appl. Phys. Lett. 35, 455 (1978).Google Scholar
3.Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1981).Google Scholar
4.Heine, V. and van Vechten, J. A., Phys. Rev. B 13, 1622 (1976).Google Scholar
5.van Vechten, J. A., Tsu, R., Saris, F. W. and Hoonhout, D., Phys. Lett. 74A, 417 (1979).Google Scholar
6.van Vechten, J. A. and Wautelet, M., Phys. Rev. B 23, 5543 (1983).Google Scholar
7.Lo, H. W. and Compaan, A., Phys. Rev. Lett. 44, 1604 (1980).Google Scholar
8.Compaan, A., Lo, H. W., Lee, M.C. and Aydinli, A., Phys. Rev. B 26, 1079 (1982).Google Scholar
9.Stritzker, B., Pospieszczyk, A. and Tagle, J. A., Phys. Rev. Lett. 47, 356 (1981).Google Scholar
10.Yen, R., Liu, J. H., Kurz, A., and Bloembergen, N., Appl. Phys. A 27, 153 (1982).Google Scholar
11.Lowndes, D. H., Phys. Rev. Lett. 48, 267 (1982),Google Scholar
12.Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P. S., Phys. Rev. Lett. 48, 33 (1982).Google Scholar
13.Larson, B. C., White, C. W., Noggle, T. S. and Mills, D. M., Phys. Rev. Lett. 48, 337 (1982).Google Scholar
14.Larson, B. C., White, C. W., Noggle, T. S., Barhorst, J. F., and Mills, D. M., Appl. Phys. Lett. 42, 282 (1983).Google Scholar
15.Pospieszczyk, A., Abdel Harith, M., and Stritzker, B., J. Appl. Phys. 54, 3176 (1983).Google Scholar
16.Olstad, R. A. and Olander, D. R., J. Appl. Phys. 46, 1499 (1975).Google Scholar
17.Hartwig, H., Mioduszewski, P., and Pospieszczyk, A., J. Nucl. Mat. 76 & 77, 625 (1978).Google Scholar
18.Baeri, P., Foti, G., Poate, J. M., and Cullis, A. G., Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
19.Goldstein, B., Szostak, D. J., and Ban, V. S., Surf. Sci. 57, 733 (1976).Google Scholar
20.Manos, D., Ruzic, D., Moore, R., and Cohen, S., J. Vac. Sci. Technology 20, 1230 (1982).Google Scholar