Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:15:06.308Z Has data issue: false hasContentIssue false

Lattice Dynamical Model for Graphite-Bromine Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

R. Al-Jishi
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

A Born-von Kármán lattice dynamical model for the graphite Br2 intercalation compounds is presented. The low frequency bromine branches are calculated using a commensurate (√3 × √13)R(30°, 13.9°) unit cell with two Br2 molecules/unit cell. In-plane zone folding is used to calculate the high frequency graphitic modes at the Brillouin zone center.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M.S. and Dresselhaus, G., Topics in Applied Physics, 51, 3, eds. Cardona, M. and Güntherodt, G., Springer-Verlag, Berlin, 1982).Google Scholar
2. Giergiel, J., Eklund, P.C., Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26 (in press).Google Scholar
3. Nemanich, R.J., Solin, S.A. and Guérard, D., Phys. Rev. B 16, 2965 (1977);Google Scholar
Underhill, C., Leung, S.Y., Dresselhaus, G., and Dresselhaus, M.S., Solid State Commun. 29, 769 (1979);Google Scholar
Solin, S.A., Mater. Sci. Eng. 31, 153 (1977);Google Scholar
Leung, S.Y., Dresselhaus, G., and Dresselhaus, M.S., Synth. Met. 2, 89 (1980);Google Scholar
Wada, N., Klein, M.V. and Zabel, H., Physics of Intercalation Compounds. Springer Series in Solid State Sciences, Vol. 38 (eds. Pietronero, L. and Tosatti, E.), Springer-Verlag, Berlin (1981), p. 199;Google Scholar
Eklund, P.C., Dresselhaus, G., Dresselhaus, M.S., and Fischer, J.E., Phys. Rev. B 16, 3330 (1977).Google Scholar
4. Ellenson, W.D., Semmingsen, D., Guérard, D., Onn, D.G. and Fischer, J.E., Mat. Sci. Eng. 31, 137 (1977);Google Scholar
Magerl, A. and Zabel, H., Phys. Rev. Lett. 46, 444 (1981).CrossRefGoogle Scholar
5. Mizutani, U., Kondow, T., and Massalski, T.B., Phys. Rev. B 17, 3165 (1978);CrossRefGoogle Scholar
Suganuma, M., Kondow, T. and Mizutani, U., Phys. Rev. B 23, 706 (1981);Google Scholar
Alexander, M.G., Goshorn, D.P., and Onn, D.G., Phys. Rev. B 22, 4535 (1980).CrossRefGoogle Scholar
6. Mizutani, U., Suganuma, M. and Kondow, T., Solid State Commun. 43, 303 (1982).CrossRefGoogle Scholar
7. Erbil, A., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 25, 5451 (1982).Google Scholar
8. Leung, S.Y., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 24, 6083 (1981).Google Scholar
9. Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4514 (1982).Google Scholar
10. Timp, G., Elman, B.S., Al-Jishi, R. and Dresselhaus, G., Solid State Commun. (in press).Google Scholar
11. Eklund, P.C., Kambe, N., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 18, 7069 (1978).Google Scholar
12. Erbil, A., Kortan, A.R., Birgeneau, R.J. and Dresselhaus, M.S., (proceedings of this Symposium);Google Scholar
Kortan, A.R., Erbil, A., Birgeneau, R.J. and Dresselhaus, M.S., Phys. Rev. Lett. 49, 1427 (1982).CrossRefGoogle Scholar
13. Ghosh, D. and Chung, D.D.L. (proceedings of this Symposium).Google Scholar
14. Leung, S.Y., Dresselhaus, M.S., Underhill, C., Krapchev, T., Dresselhaus, G. and Wuensch, B.J., Phys. Rev. B 24, 3505 (1981).Google Scholar
15. Eeles, W.T. and Turnbull, J.A., Proc. R. Soc. A 283, 79 (1965).Google Scholar