Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T02:39:29.812Z Has data issue: false hasContentIssue false

Laser-Induced Solid Phase Epitaxy of Silicon Deposited Films

Published online by Cambridge University Press:  15 February 2011

J.A. Roth
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
G.L. Olson
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
S.A. Kokorowski
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
L.D. Hess
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
Get access

Abstract

A comparative study of solid phase epitaxy (SPE) of deposited and ion-implanted amorphous Si films was conducted with the use of a newly developed laser technique. The effects of interface contaminants and contaminants distributed within a deposited film on the rate of SPE and final crystal quality are reported. In the absence of impurities, deposited Si films crystallize at the same rate as ion-implanted layers and yield epitaxial films with comparable crystal quality. The presence of impurities in deposited films at the interface or distributed within the film can severely retard the SPE growth, causing several deleterious effects which ultimately degrade the film quality. These effects are more severe at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roth, J.A. and Anderson, C.L., Appl. Phys. Lett. 31, 689 (1977).Google Scholar
2. von Allmen, M., Lau, S.S., Mayer, J.W. and Tseng, W.F., Appl. Phys. Lett. 35, 280 (1979).Google Scholar
3. Bean, J.C. and Poate, J.M., Appl. Phys. Lett. 36, 59 (1980).Google Scholar
4. Hung, L.S., Lau, S.S., von Allmen, M., Mayer, J.W., Baker, J., Williams, P. and Tseng, W.F., Appl. Phys. Lett. (in press).Google Scholar
5. Hess, L.D., Roth, J.A., Olson, G.L., Dunlap, H.L., vonAllmen, M. and Peng, J., in Proceedings of the Symposium on Laser and Electron Beam Processing of Materials, Boston, MA. Nov. 1979 (AlP Press, New York, NY 1980).Google Scholar
6. Foti, G., Bean, J.C., Poate, J.M. and Magee, C.W., Appl. Phys. Lett. 36, 840 (1980).Google Scholar
7. Lau, S.S., private communication.Google Scholar
8. Csepregi, L., Mayer, J.W. and Sigmon, T.W., Phys.Lett. 54A, 157 (1975).Google Scholar
9. Csepregi, L., Mayer, J.W. and Sigmon, T.W., Appl. Phys. Lett. 29, 92 (1976).CrossRefGoogle Scholar
10. Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
11. Olson, G.L., Kokorowski, S.A., McFarlane, R.A. and Hess, L.D., Appl. Phys. Lett., in press.Google Scholar
12. Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D., this Proceedings.Google Scholar
13. Kokorowski, S.A., Olson, G.L. and Hess, L.D., to be published.Google Scholar
14. Kern, W. and Puotinen, D., RCA Rev. 31, 187 (1970).Google Scholar
15. Roth, J.A. and Nash, G.G., unpublished work.Google Scholar
16. Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
17. vonAllmen, M., private communication.Google Scholar
18. Blum, N.A. and Feldman, C., J. Non-Cryst. Sol. 11, 242 (1972).Google Scholar
19. Koster, U., Phys. Stat. Sol. A48, 313 (1978).Google Scholar
20. Dirks, A.G. and Leamy, H.J., Thin Solid Films 47, 219 (1977).Google Scholar