Published online by Cambridge University Press: 15 March 2011
An inductive heating system was used to control the temperature of the target during laser synthesis of SWNTs. The position of the target relative to the heating coil, the type of catalyst metals and the synthesis temperatures were all varied in attempts to gain more control over the types of carbon single wall nanotubes grown. Raman spectroscopy results suggest that narrower diameter distributions are produced when the gas-phase species are rapidly condensed. TEM analysis of the raw soot shows that many tube ends are present and that the tubes are short due to incomplete growth. This investigation shows that it is possible to gain further control over SWNT diameter distributions through fine control of the reaction environment made possible with inductive heating.