Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T02:21:42.426Z Has data issue: false hasContentIssue false

Laser Lateral Crystallization of Thin Au and Cu Films on SiO2

Published online by Cambridge University Press:  01 February 2011

J.E. Kline
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15261
J.P. Leonard
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15261
Get access

Abstract

Rapid lateral solidification via excimer laser melt processing is demonstrated in 200 nm thick pure Cu and Au films, encapsulated above and below by amorphous SiO2. Mask projection irradiation is used to selectively melt lines 3 to 30 m wide in the metal films, with lateral solidification proceeding transversely from the edge to the middle of the line. Encapsulation with the SiO2 overlayer and control of the fluence are found to be crucial parameters necessary to prevent dewetting while the films are molten. Transmission electron microscopy reveals large columnar grains with twin structures and other defects typical of rapid solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S.P., Verner, I.V., Gutmann, R.J., Copper: Fundamental Mechanisms for Microelectronic Applications, Wiley & Sons, (2000).Google Scholar
2. Jones, R.E. and Desu, S.B., Mater. Res. Bull. 21, 55 (1996).Google Scholar
3. Fukuda, T. and Arai, F., in Nanotechnology, edited by Taniguchi, N., (Oxford University Press, Oxford UK, 1996). pp. 155160.Google Scholar
4. Herlach, D.M., Mater. Sci. Eng. R 12, 177 (1994).Google Scholar
5. Jones, H., Mater. Sci. Eng. A 304-306, 11 (2001).Google Scholar
6. Dahotre, N.B. (ed.), Lasers in Surface Engineering, ASM International, Surface Engineering Series Vol. 1 (1998).Google Scholar
7. Schubert, E., Bergmann, H.W., in Rapidly Solidified Alloys, Ch. 8, edited by Liebermann, H.H. (1993).Google Scholar
8. MacDonald, C.A., Malvezzi, A.M. and Spaepen, F., J. Appl. Phys. 65, 129 (1989).Google Scholar
9. Boneberg, J., Bischof, J. and Leiderer, P., Opt. Commun. 174, 145 (2000).Google Scholar
10. Bloch, J. and Zeiri, Y., J. Appl. Phys. 61, 2637 (1987).Google Scholar
11. Vitta, S., Greer, A.L. and Somekh, R.E., Mater. Sci. Eng. A 179-180, 243 (1994).Google Scholar
12. White, C.W., Aziz, M.J., in Surface Alloying by Ion, Electron, and Laser Beams, Ch. 2, (1987).Google Scholar
13. Moon, S.J., Lee, M. and Grigoropoulos, C.P., J. Heat Transf. 124, 253 (2002).Google Scholar
14. Kittl, J.A., Sanders, P.G., Aziz, M.J., Brunco, D.P. and Thompson, M.O., Acta Mater. 48, 4797 (2000).Google Scholar
15. Desfulian, K.K., Krusius, J.P., Thompson, M.O. and Talwar, S., Appl. Phys. Lett. 81, 2238 (2002).Google Scholar
16. Tsao, J.Y., Picraux, S.T., Peercy, P.S. and Thompson, M.O., Appl. Phys. Lett. 48, 278 (1986).Google Scholar
17. Williamson, S., Mourou, G. and Li, J.C.M., Phys. Rev. Lett. 52, 2364 (1984).Google Scholar
18. Homan, B.E., Connery, M.T., Harrison, D.E. and MacDonald, C.A., Mat. Res. Soc. Symp. Proc. 279, 717 (1993).Google Scholar
19. Comita, P.B., Price, P.E. and Kodas, T.T., J. Appl. Phys. 71, 221 (1992).Google Scholar
20. Pedraza, A.J. and Godbole, M.J., Metal. Trans. A 23A, 1095 (1992).Google Scholar
21. Vitta, S., Greer, A.L. and Somekh, R.E., Mater. Sci. Eng. 98, 105 (1988).Google Scholar
22. Arnold, C.B., Aziz, M.J., Schwarz, M. and Herlach, D.M., Phys. Rev. B 59, 334 (1999).Google Scholar
23. Atwater, H.A., West, J.A., Smith, P.M., Aziz, M.J., Tsao, J.Y., Peercy, P.S. and Thompson, M.O., Mat. Res. Soc. Symp. Proc. 157, 369 (1990).Google Scholar
24. Voutsas, A.T., Appl. Surf. Sci. 208-209, 250 (2003).Google Scholar
25. Bischof, J., Scherer, D., Herminghaus, S. and Leiderer, P., Phys. Rev. Lett. 77, 1536 (1996).Google Scholar
26. Godbole, M.J., Pedraza, A.J., Lowndes, D.H. and Kenik, E.A., J. Mater. Res. 4, 1202 (1989).Google Scholar
27. Srolovitz, D.J. and Goldiner, M.G., Journal of Metals 3, 31 (1995).Google Scholar
28. Kline, E., Leonard, J., Mat. Res. Soc. Symp. Proc., 854E, U11.6 (2004)Google Scholar
29. Kim, H.J. and Im, J.S., Appl. Phys. Lett. 68, 1513 (1996).Google Scholar
30. Im, J.S., Crowder, M.A., Sposili, R.S., Leonard, J.P., Kim, H.J., Yoon, J.H., Gupta, V.V., Song, H.J. and Cho, H.S., Phys. Status Solidi 166, 603 (1998).Google Scholar
31. Eckler, K. and Herlach, D.M., Mater. Sci. Eng. A 178, 159 (1994).Google Scholar
32. Leonard, J.P. and Im, J.S., Appl. Phys. Lett. 78, 3454 (2001).Google Scholar
33. Battersby, S.E., Cochrane, R.F. and Mullis, A.M., J. Mater. Sci. 35, 1365 (2000).Google Scholar
34. Lee, M., Moon, S., Hatano, M. and Grigoropoulos, C.P., Appl. Phys. A 73, 317 (2001).Google Scholar
35. Wang, L., Liu, H., Chen, K., Hu, Z., Physica B, 239, pp. 267 (1997).Google Scholar
36. Sun, D.Y., Asta, M., Hoyt, J.J., Phys. Rev. B, 69, 024108 (2004).Google Scholar