Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:32:04.933Z Has data issue: false hasContentIssue false

Laser Deposition, Vibrational Spectroscopy, NMR Spectroscopy and Stm Imaging of C60 and C70

Published online by Cambridge University Press:  28 February 2011

G. Meijer
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. S. Bethune
Affiliation:
To whom correspondence should be addressed.
W. C. Tang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
H. J. Rosen
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
R. D. Johnson
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
R. J. Wilson
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. D. Chambliss
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
W. G. Golden
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
H. Seki
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
M. S. De Vries
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
C. A. Brown
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. R. Salem
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
H. E. Hunziker
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
H. R. Wendt
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

We recently demonstrated that C60 and C70, as well as other fullerenes, can be deposited and accumulated on surfaces using laser ablation of graphite in an Inert gas atmosphere. After learning of the work of Krätschmer et al. indicating the presence of C60 in carbon soot, we showed that samples consisting almost exclusively of C60 and C70 can be sublimed from such soot. Vibrational Raman spectra of C60 and C70 were obtained from these samples. The C60 spectrum Is consistent with the calculated spectrum of Buckmlnsterfullerene, and the strongest three lines can be assigned on the basis of frequency and polarization. The NMR spectrum of dissolved C60 was then obtained, and found to consist of a single resonance, establishing the icosahedral symmetry of this molecule. STM images of the C60 molecules on a Au(111) crystal face show that these clusters form hexagonal arrays with an intercluster spacing of 11.0 Å and are mobile at ambient temperature. Distinctly taller species evident in the arrays are believed to be C70 clusters. Vibrational Raman and infrared spectra have also been obtained for separated C60 and C70.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162163 (1985).CrossRefGoogle Scholar
2 Kroto, H., Science 242, 11391145 (1988).CrossRefGoogle Scholar
3 This work has been reviewed by Heath, J. R., Spectroscopy 5, 3643 (1990).Google Scholar
4 Taubes, G., Discover 11, 5259 (1990).Google Scholar
5 Cox, D. M., Reichmann, K. C., and Kaldor, A., J. Chem. Phys. 88, 15881597 (1988).CrossRefGoogle Scholar
6 Krätschmer, W., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).CrossRefGoogle Scholar
7 Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).CrossRefGoogle Scholar
8 Meijer, G. and Bethune, D. S., J. Chem. Phys. 93, 7800 (1990).CrossRefGoogle Scholar
9 Bethune, D. S., Meijer, G., Tang, W. C., and Rosen, H. J., Chem. Phys. Lett. 174, 219 (1990).CrossRefGoogle Scholar
10 Johnson, R. D., Meijer, G., and Bethune, D. S., J. Am. Chem. Soc. 112, 8983 (1990).CrossRefGoogle Scholar
11 Taylor, R., Hare, J. P., Abdul-Sada, A. K., and Kroto, H. W., J. Chem. Soc, Chem. Comm. 20, 1423 (1990).CrossRefGoogle Scholar
12 Ajie, H. et al., J. Phys. Chem. 94, 86308633 (1990).CrossRefGoogle Scholar
13 Haufler, R. E. et al., J. Phys. Chem. 94, 86348636 (1990).CrossRefGoogle Scholar
14 Meijer, G., de Vries, M. S., Hunziker, H. E., and Wendt, H. R., (Appl. Phys. B (in press)).Google Scholar
15 Meijer, G. and Bethune, D. S., Chem. Phys. Lett. 175, 12 (1990).CrossRefGoogle Scholar
16 Harter, W. G. and Weeks, D. E., J. Chem. Phys. 90, 4727 (1989).CrossRefGoogle Scholar
17 Slanina, Z., Rudzinski, J. M., Togasi, M., and Osawa, E., J. of Mol. Struct. (Theochem) 202, 169 (1989).CrossRefGoogle Scholar
18 Weeks, D. E. and Harter, W. G., J. Chem. Phys. 90, 4744 (1989).CrossRefGoogle Scholar
19 Stanton, R. E. and Newton, M. D., J. Phys. Chem. 92, 2141 (1988).CrossRefGoogle Scholar
20 Wu, Z. C., Jelski, D. A., and George, T. F., Chem. Phys. Lett. 137, 291 (1987).CrossRefGoogle Scholar
21 Cyvin, S. J., Brendsdal, E., Cyvin, B. N., and Brunvoll, J., Chem. Phys. Lett. 143, 377 (1988).Google Scholar
22 (Johnson, R. D., et al., elsewhere in these Proceedings.).Google Scholar
23 Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Appl. Phys. Lett. 40, 170 (1982).CrossRefGoogle Scholar
24 Ohtani, H., Wilson, R.J., Chiang, S., and Mate, C.M., Phys. Rev. Let. 60, 2398 (1988).CrossRefGoogle Scholar
25 Lippel, P. H., Wilson, R. J., Miller, M. D., Wöli, Ch., and Chiang, S., Phys. Rev. Lett. 62, 171174 (1989).CrossRefGoogle Scholar
26 Wilson, R. J., Meijer, G., Bethune, D. S., Johnson, R. D., Chambliss, D. D., de Vries, M. S., Hunziker, H. E., and Wendt, H. R., Nature 348, 621622 (1990).CrossRefGoogle Scholar
27 Hallmark, V. M., Chiang, S., Rabolt, J. F., Swalen, J. D., and Wilson, R. J., Phys. Rev. Lett. 59, 28792882 (1987).CrossRefGoogle Scholar
28 Disch, R. L. and Schulman, J. M., Chem. Phys. Lett. 125, 465466 (1986).Google Scholar
29 Shibuya, T.-I. and Yoshitani, M., Chem. Phys. Lett. 137, 1316 (1987).CrossRefGoogle Scholar
30 Yang, S. H., Pettiette, C. L., Conceicao, J., Cheshnovsky, O., and Smalley, R. E., Chem. Phys. Lett. 139, 233238 (1987).CrossRefGoogle Scholar
31 Eigler, D. M. and Schweizer, E. K., Nature 344, 524526 (1990).CrossRefGoogle Scholar
32 Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S., and Salem, J. R., (J. Phys. Chem. (in press).).Google Scholar
33 Krätschmer, W., Sorg, N., and Huffman, D. R., Surf. Sci. 156, 814 (1985).CrossRefGoogle Scholar
34 (Huffman, D. R., et al., elsewhere in these Proceedings).Google Scholar
35 (Preprint supplied by Cox, D. M.).Google Scholar