Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:41:02.367Z Has data issue: false hasContentIssue false

Laser Crystallization of Deposited Silicon Films

Published online by Cambridge University Press:  15 February 2011

G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
H. J. Leamy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
D. E. Aspnes
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
C. J. Doherty
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
T. T. Sheng
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
L. E. Trimble
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
Get access

Abstract

Silicon layers evaporated on crystalline Si have been crystallized by Q-switched Nd:YAG laser irradiation. A strong correlation was observed between the density of a-Si films and the quality of the epitaxial regrowth from the liquid phase. Dense films crystallized epitaxially in a wide range of laser energy densities. Layers with 20% lower density, as determined by spectroscopic ellipsometry, had higher crystallization thresholds and suffered from severe pitting of the surface. Coalescence of the excess void volume into microbubbles, stabilized by gaseous contaminants, is responsible for the surface degradation.

In polycrystalline films on amorphous insulating substrates laser melting changes the grain distribution. Rapid melting and solidification of small diameter spots creates concentric rings of large crystallites. This characteristic pattern is explained by a simple model, based on the kinetics of crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laser-Solid Interactions and Laser Processing – 1978 Ferris, S. D., Leamy, H. J. and Poate, J. M.: eds. (Amer. Inst. Phys., New York 1979)Google Scholar
2. Laser and Electron Beam Processing of Electronic Materials Anderson, C. L., Celler, G. K. and Rozgonyi, G. A.: eds. (The Electrochemical Soc., Princeton 1980)Google Scholar
3. Laser and Electron Beam Processing of Materials White, C. W. and Peercy, P. S.: eds. (Academic Press, New York 1980)Google Scholar
4. Bean, J. C., Leamy, H. J., Poate, J. M., Rozgonyi, G. A., van der Ziel, J., Williams, J. S. and Celler, G. K., in ref. 1, p. 487.Google Scholar
5. Hess, L. D., Roth, J. A., Olson, G. L., Dunlap, H. L., von Allmen, M. and Peng, J., in ref. 3, p. 562.Google Scholar
6. Bean, J. C., Leamy, H. J., Poate, J. M., Rozgonyi, G. A., van der Ziel, J., Williams, J. S. and Celler, G. K., J. Appl. Phys. 50, 881 (1979).Google Scholar
7. Gibbons, J. F., in ref. 2, p. 1.Google Scholar
8. Olson, G. L., Hess, L. D., Yaron, G. and Peng, J., in ref. 3, p. 291.Google Scholar
9. Wu, C. P. and Magee, C. W., in ref. 1, p. 357.Google Scholar
10. Shah, R. R., Lam, H. W., Crosthwait, L. and Tasch, A. F. Jr., in ref. 2, p. 235.Google Scholar
11. Schott, J. T., Electrochemical Soc. Meeting, Oct. 1980, unpublished.Google Scholar
12. Leamy, H. J., Rozgonyi, G. A., Sheng, T. T. and Celler, G. K., in ref. 2, p. 333.Google Scholar
13. Aspnes, D. E., Kinsbron, E. and Bacon, D. D., Phys. Rev. B21, 3290 (1980).CrossRefGoogle Scholar
14. Aspnes, D. E. and Studna, A. A., Appl. Opt. 14, 220 (1975);Google Scholar
14a Rev. Sci. Instrum. 49, 291 (1978).CrossRefGoogle Scholar
15. Bagley, B. G., Aspnes, D. E., Adams, A. C., Bull. Amer. Phys. Soc. 25, 12 (1980).Google Scholar
16. Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).Google Scholar
17. Bean, J. C. and Poate, J. M., Appl. Phys. Lett. 36, 59 (1980).Google Scholar