Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:43:18.772Z Has data issue: false hasContentIssue false

Large Grained, Low Defect Density Polycrystalline Silicon on Glass Substrates by Large-area Diode Laser Crystallisation

Published online by Cambridge University Press:  11 July 2012

Bonne Eggleston
Affiliation:
University of New South Wales, Kensington, NSW, Australia, 2052 Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Sergey Varlamov
Affiliation:
University of New South Wales, Kensington, NSW, Australia, 2052
Jialiang Huang
Affiliation:
University of New South Wales, Kensington, NSW, Australia, 2052
Rhett Evans
Affiliation:
Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Jonathon Dore
Affiliation:
University of New South Wales, Kensington, NSW, Australia, 2052 Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Martin A. Green
Affiliation:
University of New South Wales, Kensington, NSW, Australia, 2052
Get access

Abstract

A new method to form high quality crystalline silicon thin films on cheap glass substrates is developed using a single pass of a line-focus cw diode laser in air. The laser process results in the formation of large high-quality crystals as they grow laterally in the scan direction – seeded by the previously crystallised region. Grains 10 μm in thickness, up to millimetres in length and hundreds of microns in width have been grown with virtually zero detectable intragrain defects. Another mode is found which results in much smaller crystals grown by partial melting. The dominant grain boundaries identified are Σ3 <111> 60° twins. Hall mobilities as high as 470 cm2/Vs have been recorded. A diffused emitter is used to create a p-n junction at the rear of the films which produces open-circuit voltages as high as 539 mV.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Keevers, M. J., Young, T. L., Schubert, U., Green, M. A., 22nd EUPVSEC, 1783 (2007).Google Scholar
Amkreutz, D., Mueller, J., Schmidt, M., Haenel, T., Schulze, a T. F., PIP: Research and Applications, doi:10.1002/pip.1098 (2011).Google Scholar
Sinh, N. D., Andrae, G., Falk, F., Ose, E., Bergmann, J., SolMat, 74 (1-4) 295303, doi:10.1016/S0927-0248(02)00088-0 (2002).Google Scholar
Falk, F., Andrae, G., J. Crys. Gro., 287 (2) (2006) 397401, doi:10.1016/j.jcrysgro.2005.11.052.CrossRefGoogle Scholar
Andrae, G., Bergmann, J., Bochmann, A., Falk, F., Gawlik, A., Ose, E., Plentz, J., Dauwe, S., Kieliba, T., WCPEC-4 vol. 2, 15641567, doi:10.1109/WCPEC.2006.279783 (2007).Google Scholar
Saboundji, A., Mohammed-Brahim, T., Andrae, G., Bergmann, J., Falk, F., J. Noncrys. Sol. 338-340, doi:10.1016/j.jnoncrysol.2004.03.085 (2004) 758–761.Google Scholar
Sameshima, T., Appl. Phys. A-Mater 96 (1), doi:10.1007/s00339-008-5041-x (2009) 137144.CrossRefGoogle Scholar
Kuroki, S., Kawasaki, Y., Fujii, S., Kotani, K., and Ito, Takashi, J. Electrochem. Soc.,158 (9), H924H930, doi:10.1149/1.3610410 (2011).CrossRefGoogle Scholar
Revermann, M., Bayer, A., Meinschien, J., Photon Processing in Microelectronics and Photonics VII, vol. 6879, doi:10.1117/12.762956 (2008).Google Scholar
Aberle, A.G., Harder, N.P., and Oelting, S., J. Crys. Gro., 226 (2-3):209214. doi:10.1016/S0022-0248(01)01379-3 (2001).CrossRefGoogle Scholar
Dore, J., Evans, R., Eggleston, B., Varlamov, S., and Green, M.A., MRS proceedings, to be published (2012).Google Scholar