Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T05:12:25.494Z Has data issue: false hasContentIssue false

Kinetics of Periodic Pattern Formation in Diffusion-Reaction in a Gel

Published online by Cambridge University Press:  10 February 2011

C-S. Kuo
Affiliation:
Chemistry Department, Boston University, Boston, MA 02215, [email protected]
R. Bansil
Affiliation:
Physics Department, Boston University, Boston, MA 02215, [email protected]
E. L. Cabarcos
Affiliation:
Departmento de Fisico Quimica, Complutense University, 28040, Madrid, Spain
Get access

Abstract

A video photographic study of the kinetics of the precipitation reaction Na2HPO4 + CaCl2CaHPO4 in agarose gels is presented. Periodic precipitation, known as Liesegang bands, are observed when one of the reactants is incorporated in the gel and the other allowed to diffuse in. The time evolution of the first Liesegang band's profile provides a direct confirmation of the supersaturation model, with a decrease in intensity as the monomer concentration is depleted and the formation of a broad plateau behind the sharp band from large particles left after the incorporation of the smaller mobile particles into the rapidly growing aggregate front. The time dependence of leading edge of the precipitate front agrees with the predictions of the reaction-diffusion-supersaturation model of Liesegang band formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gálfi, L. and Ráacz, Z., Phys. Rev.A 38, 3151 (1988).Google Scholar
2. Ben-Naim, E. and Redner, S., J. Phys. A 25, L575 (1992).Google Scholar
3. Barkema, G. T., Phys. Rev. E 53, 2017 (1996).Google Scholar
4. Dee, G. T., Phys. Rev. Lett. 57, 275 (1986).Google Scholar
5. Smith, D. A., J. Chem. Phys. 81, 3102 (1984).Google Scholar
6. Liesegang, R. E., Naturw. Wochenschr. 11, 353 (1896). For a recent review seeGoogle Scholar
Schibeci, R. A. and Carlsen, C., J. Chem. Edu. 65, 365 (1988).Google Scholar
7. Kai, S., Müller, S. C., and Ross, J., J. Chem. Phys. 76, 1392 (1982).Google Scholar
8. LeVan, M. E. and Ross, J., J. Phys. Chem. 91, 6300 (1987).Google Scholar
9. Chopard, B., Luthi, P. and Droz, M., Phys. Rev. Lett. 72, 1384 (1994).Google Scholar
10. Büki, A., Kárpáti-Smidrózki, E. and Zrínyi, M., J. Chem. Phys. 103, 10387 (1995).Google Scholar
11. Venzi, G. and Ross, J., J. Chem. Phys. 77, 1308 (1982).Google Scholar
12. Cabarcos, E. L., Kuo, C-S, Scala, A. and Bansil, R., Phys. Rev. Lett. 77, 2834 (1996).Google Scholar
13. Keller, J. B. and Rubinow, S. I., J. Chem. Phys. 74, 5000 (1981).Google Scholar