Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:41:01.972Z Has data issue: false hasContentIssue false

A Kinetic Phase Diagram for Ultrathin Film Ni/Si(111): Auger Lineshape Results

Published online by Cambridge University Press:  25 February 2011

P. A. Bennett
Affiliation:
Physics Department, Arizona State University, Tempe, Arizona 85287
J. R. Butler
Affiliation:
Physics Department, Arizona State University, Tempe, Arizona 85287
X. Tong
Affiliation:
Physics Department, Arizona State University, Tempe, Arizona 85287
Get access

Abstract

We have used Auger spectroscopy to monitor chemical reactions during solid phase epitaxy by contact reaction in the Ni/Si(ll1) ultrathin film system. We show that coexisting phases may be separated by numerically fitting the composite Si LVV lineshape using a linear combination of single phase “fingerprint” spectra. Sytematic measurements of coverage and temperature conditions are compiled into a kinetic phase diagram. Comparison with conventional (1000Å) thin film data suggest that the reactions forming Ni2Si and NiSi at > 20 Å thickness are bulk diffusion limited, while surface diffusion dominates at lower coverage. On the other hand, the formation of NiSi2 appears to be nucleation limited at all coverages, with dramatic variations in reaction rate with film thickness. This is discussed in terms of a competition between surface and bulk free energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nicolet, M. A. and Lau, S. S., “Formation and Characterization of Transition Metal Silicides” in VLSI Electronics vol. 6, ed. Einspruch, N. and Larrabee, G. (Academic Press, New York, 1983) pp. 330459.Google Scholar
2. Derrien, J. and d'Avitaya, F. Arnaud, J. Vac. Sci. Technol.,A5(4) (1987) p.2111.Google Scholar
3. Poate, J.M., Tu, K.N. and Mayer, J.W., “Silicide Formation” in Thin Films Interdiffusion and Reactions, eds. John Wiley & Sons (1978).Google Scholar
4. d'Heurle, F. M. and Gas, P., J. Mater. Res. 1 (1986) p. 205.Google Scholar
5. Ottaviani, G., Thin Sol. Films 140 (1986) p. 3.Google Scholar
6. Allen, C.W., Sargent, G.A., Mat. Res. Soc. Symp. Proc. 54 (1986) p. 97.Google Scholar
7. Anderson, R., Baglin, J., Dempsey, J., Hammer, W., d'Heurle, F. and Petersson, S., Appl. Phys. Lett 35 (1979) p. 285.Google Scholar
8. Tung, R.T., Gibson, J.M., Poate, J.M., Phys. Rev. Lett. 50 (1983) p. 429.Google Scholar
9. Comin, F., Rowe, J.E. and Citrin, P.H., Phys. Rev. Lett. 51 (1983) p. 2402.CrossRefGoogle Scholar
10. Gibson, J.M., Batstone, J.L., Tung, R.T. and Unterwald, F.C., Phys. Rev. Letters 60 (1988) p. 1158.Google Scholar
11. Porter, T. L., Chang, C. S., Knipping, U. and Tsong, I. S. T., Phys. Rev. B36 (1987) p. 9150.Google Scholar
12. von, H. Kanel, Graf, T., Henz, J., Ospelt, M. and Wachter, P., J. of Crystal Growth 81 (1987) p. 470.Google Scholar
13. van, E.J. Loenen, Veen, J.F. Van Der, LeGoues, F.K., Surf. Sci. 157 (1985) p. 1.Google Scholar
14. Fischer, A.E.M.J., Maree, P.M.J., Veen, J.F. Van Der, App. Surf. Sci. 27(1986) p. 143.Google Scholar
15. Bennett, P. A., Butler, J. R. and Tong, X., Jour. Vac. Sci. Tech. (1989) (in press).Google Scholar
16. Bennett, P.A., Fuggle, J.C., Hillebrect, F.U., Lenselink, A. and Sawatzky, G.A., Physical Review B27, 2194, (1983).Google Scholar
17. Powell, C. J., J. Vac. Sci. Tech. A4(3) (1986) p. 1532.Google Scholar
18. Loenen, E.J. van, Fischer, A.E.M.J. and Veen, J.F. Van Der, Legoues, F., Surf. Sci. 154 (1985) p. 52.Google Scholar
19. Rubloff, G.W., Festkorperprobleme XXIII (1983) p. 179.Google Scholar
20. Hinkel, V., Sorba, L., Haak, H., Horn, K., Braun, W., Appl. Phys. Lett. 50 (1987) p. 1257.Google Scholar
21. Bennett, P.A., Johnson, A.P. and Halawith, B.N., Phys. Rev. B. 37 (1988) p.4268.Google Scholar
22. Tu, K., Thin Solid Films 25 (1975) p. 403.Google Scholar
23. d'Heurle, F., Petersson, C. S., Baglin, J. E. E., Placa, S. J. La and Wong, C. Y., J. App. Phys. 55 (1984) p. 4208.Google Scholar
24. Baglin, J. E. E., d'Heurle, F. M. and Petersson, C. S. in Thin Film Interfaces and Interactions, ed. Baglin, J. E. E. and Poate, J. M. (MRS proc. 80-2, 1980), p. 341.Google Scholar
25. Rubloff, G.W., Mat. Res. Soc. Symp. Proc. Proc. 54 (1986) p. 3.Google Scholar
26. Porter, D. A. and Easterling, K. E., Phase Transformation in Metals and Alloys (van Nostrand, England, 1988).Google Scholar
27. d'Heurle, F. M. in Thin Films and Interfaces II, ed. Baglin, J. E. E., Campbell, D. R. and Chu, W. K. (MRS proc. 25, Boston, Mass., 1983) p. 3.Google Scholar
28. Bennett, P.A., Tong, X. and Butler, J.R., Jour. Vac. Sci. Tech. B6 (1988) p. 1336.Google Scholar
29. Tung, R.T., J.Vac. Sci. Technol. A5 (1987) p. 1840.Google Scholar