Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T04:14:28.987Z Has data issue: false hasContentIssue false

Kinetic Monte Carlo Investigation of the Effects of Vacancy Pairing on Oxygen Diffusivity in Yttria-Stabilized Zirconia

Published online by Cambridge University Press:  17 October 2011

Brian S. Good*
Affiliation:
Materials and Structures Division NASA Glenn Research Center, Cleveland, OH, USA.
Get access

Abstract

Yttria-stabilized zirconia’s high oxygen diffusivity and corresponding high ionic conductivity, and its structural stability over a broad range of temperatures, have made the material of interest for use in a number of applications, for example, as solid electrolytes in fuel cells. At low concentrations, the stabilizing yttria also serves to increase the oxygen diffusivity through the presence of corresponding oxygen vacancies, needed to maintain charge neutrality. At higher yttria concentration, however, diffusivity is impeded by the larger number of relatively high energy migration barriers associated with yttrium cations. In addition, there is evidence that oxygen vacancies preferentially occupy nearest-neighbor sites around either dopant or Zr cations, further affecting vacancy diffusion. We present the results of ab initio calculations that indicate that it is energetically favorable for oxygen vacancies to occupy nearest-neighbor sites adjacent to Y ions, and that the presence of vacancies near either species of cation lowers the migration barriers. Kinetic Monte Carlo results from simulations incorporating this effect are presented and compared with results from simulations in which the effect is not present.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aldebert, P. and Traverse, J. P., J. Am Ceram. Soc. 68 [1], 3440 (1985).Google Scholar
2. Casselton, R. E. W., Phys. Status Solidi A, 2, 571585 (1970).Google Scholar
3. Schelling, P. K., Phillpot, S. R. and Wolf, D, J. Am Ceram. Soc. 84 [7], 16091619 (2001).Google Scholar
4. Fabris, S., Paxton, A. T. and Finnis, M. W., Phys. Rev. B 63, 094101 (2001).Google Scholar
5. Fevre, M, Finel, A. and Caudron, R., Phys. Rev. B 72, 104117 (2005).Google Scholar
6. Fevre, M, Finel, A., Caudron, R. and Mevrel, R., Phys. Rev. B 72, 104118 (2005).Google Scholar
7. Krishnamurthy, R., Yoon, Y.-G., Srolovitz, D. J. and Car, R., J. Am. Ceram. Soc. 87 [10], 18211830 (2004).Google Scholar
8. Krishnamurthy, R., Srolovitz, D. J., Kudin, K. N. and Car, R., J. Am. Ceram. Soc. 88 [8], 21432151 (2005).Google Scholar
9. Kahn, M. S., Islam, M. S. and Bates, D. R., J. Mater. Chem. 8 [10], 22992307 1998.Google Scholar
10. Okazaki, H., Suzuki, H. and Ihata, K., Phys. Let. A 188, 291295 (1994).Google Scholar
11. Perumal, T. P., Sridhar, V., Murthy, K. P. N., Easwarakumar, K. S. and Ramasamy, S., Comp. Mat. Sci. 38, 865872 (2007).Google Scholar
12. Shimojo, F., Okabe, T., Tachibana, F., Kobayashi, M. and Okazaki, H., J. Phys. Soc. Jpn 61, 28482857 (1992), and F. Shimojo and H. Okazaki, J. Phys. Soc. Jpn 61, 4106-4118(1992).Google Scholar
13. Young, W. M. and Elcock, E. W., Proc. of the Phys. Soc. 89, 735 (1966).Google Scholar
14. Bortz, A. B. and Kalos, M. H. and Lebowitz, J. L., J. of Comput. Physics 17, 10 (1975).Google Scholar
15. Voter, A. F., Kinetic Monte Carlo, in Radiation Effects in Solids, Proceedings of the NATO Advanced Study Institute on Radiation Effects in Solids, Sickafus, K. E., Kotomin, E. A., Uberuaga, B. P., eds., 123, Springer, Dordrecht, The Netherlands, 2007.Google Scholar
16. Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Cote, M., Deutsch, T., Genovese, L., Ghosez, Ph., Giantomassi, M., Goedecker, S., Hamann, D. R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M. J. T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.-M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M. J., Zerah, G., Zwanziger, J. W., Computer Phys. Comm. 108, 2582 (2009).Google Scholar
17. Li, X. and Hafskjold, B., J. Phys.: Condens. Matter 7, 1255 (1995).Google Scholar
18. Oishi, Y. and Ando, K., Transport in Nonstoichiometric Compounds, Simovich, G. and Stubican, V., eds., NATO ASI Ser. B 129, 1985.Google Scholar
19. Gibson, I. R. and Irvine, J. T. S., J. Mater. Chem. 6, 895 (1996).Google Scholar
20. Orliukas, A., Bohac, P., Sasaki, K. and Gauckler, L. J., Solid State Ionics 72, 35 (1994).Google Scholar
21. Gibson, I. R., Lachowski, E. E., Irvine, J. T. S. and Dransfield, G. P., Solid State Ionics 72, 265 (1994).Google Scholar